Marine ecosystem assessment in a fisheries management context

2002 ◽  
Vol 59 (9) ◽  
pp. 1429-1440 ◽  
Author(s):  
Jason S Link ◽  
Jon K.T Brodziak ◽  
Steve F Edwards ◽  
William J Overholtz ◽  
David Mountain ◽  
...  

We examined a suite of abiotic, biotic, and human metrics for the northeast U.S. continental shelf ecosystem at the aggregate, community, and system level (>30 different metrics) over three decades. Our primary goals were to describe ecosystem status, to improve understanding of the relationships between key ecosystem processes, and to evaluate potential reference points for ecosystem-based fisheries management (EBFM). To this end, empirical indicators of ecosystem status were examined and standard multivariate statistical methods were applied to describe changes in the system. We found that (i) a suite of metrics is required to accurately characterize ecosystem status and, conversely, that focusing on a few metrics may be misleading; (ii) assessment of ecosystem status is feasible for marine ecosystems; (iii) multivariate points of reference can be determined for EBFM; and (iv) the concept of reference directions could provide an ecosystem level analog to single-species reference points.

2021 ◽  
pp. 611-650
Author(s):  
Jason S. Link ◽  
Anthony R. Marshak

This chapter presents a cumulative examination of socioeconomic, governance, ecological, and environmental indicators among the eight major United States (U.S.) marine fishery ecosystems, 26 U.S. subregions, and 14 U.S. participatory regional fisheries management organization (RFMO) jurisdictions. Based on these indicators and as one might expect, some regions are making greater progress toward ecosystem-based fisheries management (EBFM) than others, but in all U.S. marine ecosystems there has been notable progress toward EBFM, albeit on different facets for different regions. Common areas of notable progress toward EBFM are observed around the nation in areas of implementing ecosystem-level planning and advancing understanding of ecosystem processes. Overall, it appears that more inherently productive marine ecosystems tend to have greater biomass, fisheries landings, proportional LMR-based employments, and fisheries revenue. More work remains in areas of ecosystem and community resilience, as well as broader consideration of more systematic measures for a fisheries ecosystem (especially ecosystem-level reference points). Several areas of common challenges and anticipated concerns are identified, with an eye toward focusing efforts on addressing these issues.


2015 ◽  
Vol 73 (4) ◽  
pp. 1042-1050 ◽  
Author(s):  
Tara E. Dolan ◽  
Wesley S. Patrick ◽  
Jason S. Link

Abstract Ecosystem management (EM) suffers from linguistic uncertainty surrounding the definition of “EM” and how it can be operationalized. Using fisheries management as an example, we clarify how EM exists in different paradigms along a continuum, starting with a single-species focus and building towards a more systemic and multi-sector perspective. Focusing on the specification of biological and other systemic reference points (SRPs) used in each paradigm and its related regulatory and governance structures, we compare and contrast similarities among these paradigms. We find that although EM is a hierarchical continuum, similar SRPs can be used throughout the continuum, but the scope of these reference points are broader at higher levels of management. This work interprets the current state of the conversation, and may help to clarify the levels of how EM is applied now and how it can be applied in the future, further advancing its implementation.


2021 ◽  
Vol 7 ◽  
Author(s):  
Daniel Howell ◽  
Amy M. Schueller ◽  
Jacob W. Bentley ◽  
Andre Buchheister ◽  
David Chagaris ◽  
...  

Although many countries have formally committed to Ecosystem-Based Fisheries Management (EBFM), actual progress toward these goals has been slow. This paper presents two independent case studies that have combined strategic advice from ecosystem modeling with the tactical advice of single-species assessment models to provide practical ecosystem-based management advice. With this approach, stock status, reference points, and initial target F are computed from a single-species model, then an ecosystem model rescales the target F according to ecosystem indicators without crossing pre-calculated single-species precautionary limits. Finally, the single-species model computes the quota advice from the rescaled target F, termed here Feco. Such a methodology incorporates both the detailed population reconstructions of the single-species model and the broader ecosystem perspective from ecosystem-based modeling, and fits into existing management schemes. The advocated method has arisen from independent work on EBFM in two international fisheries management systems: (1) Atlantic menhaden in the United States and (2) the multi species fisheries of the Irish Sea, in the Celtic Seas ecoregion. In the Atlantic menhaden example, the objective was to develop ecological reference points (ERPs) that account for the effect of menhaden harvest on predator populations and the tradeoffs associated with forage fish management. In the Irish Sea, the objective was to account for ecosystem variability when setting quotas for the individual target species. These two exercises were aimed at different management needs, but both arrived at a process of adjusting the target F used within the current single-species management. Although the approach has limitations, it represents a practical step toward EBFM, which can be adapted to a range of ecosystem objectives and applied within current management systems.


Marine Policy ◽  
2016 ◽  
Vol 64 ◽  
pp. 102-115 ◽  
Author(s):  
Rebecca L. Selden ◽  
Sarah R. Valencia ◽  
Ashley E. Larsen ◽  
Jorge Cornejo-Donoso ◽  
Amanda A. Wasserman

2008 ◽  
Vol 92 (2-3) ◽  
pp. 231-241 ◽  
Author(s):  
Rainer Froese ◽  
Amanda Stern-Pirlot ◽  
Henning Winker ◽  
Didier Gascuel

2020 ◽  
Vol 96 (4) ◽  
pp. 617-640
Author(s):  
Andrea Dell'Apa ◽  
Joshua P Kilborn ◽  
William J Harford

Recent global improvements to fisheries sustainability have been made through the adoption of more holistic management frameworks, such as the ecosystem approach to fisheries management (EAFM) and ecosystem-based fisheries management (EBFM), and a concurrent transition from a focus on single species or stocks to multispecies and ecosystems. In the US, federal and regional fisheries management encompass multiple layers of comprehensive, ecosystem focused management strategies for living marine resources within its network of large marine ecosystems (LMEs). Here, we provide an overview for the US portion of the Gulf of Mexico large marine ecosystem (GOM-LME) by examining multiple aspects of its fishery management scheme through the lenses of EAFM, EBFM, and the integrated ecosystem assessment (IEA) framework that has been used worldwide to advise, inform, and operationalize ecosystem management. The US-GOM's fishery management and ecosystem community appears to be keeping pace with other US regional efforts. However, more tools like fishery ecosystem plans (FEPs), which are conducive to the effective integration of ecosystem considerations into fishery management processes, are needed to inform and guide the work of regional managers, decision-makers, and stakeholders. Therefore, we propose a structured planning process aimed at advancing the development and implementation of a GOM-FEP, and describe two case studies of EAFM and EBFM applications, respectively, that can help to navigate through our proposed planning process. This work offers strategic guidance and insights to support efforts of regional fishery managers to translate ecosystem management principles, approaches, and objectives into an "action oriented" FEP in the GOM-LME.


2018 ◽  
Vol 76 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Kristin N Marshall ◽  
Laura E Koehn ◽  
Phillip S Levin ◽  
Timothy E Essington ◽  
Olaf P Jensen

Abstract The appetite for ecosystem-based fisheries management (EBFM) approaches has grown, but the perception persists that implementation is slow. Here, we synthesize progress toward implementing EBFM in the United States through one potential avenue: expanding fish stock assessments to include ecosystem considerations and interactions between species, fleets, and sectors. We reviewed over 200 stock assessments and assessed how the stock assessment reports included information about system influences on the assessed stock. Our goals were to quantify whether and how assessments incorporated broader system-level considerations, and to explore factors that might contribute to the use of system-level information. Interactions among fishing fleets (technical interactions) were more commonly included than biophysical interactions (species, habitat, climate). Interactions within the physical environment (habitat, climate) were included twice as often as interactions among species (predation). Many assessment reports included ecological interactions only as background or qualitative considerations, rather than incorporating them in the assessment model. Our analyses suggested that ecosystem characteristics are more likely to be included when the species was overfished (stock status), the assessment is conducted at a science centre with a longstanding stomach contents analysis program, and/or the species life history characteristics suggest it is likely to be influenced by the physical environment, habitat, or predation mortality (short-lived species, sessile benthic species, or low trophic-level species). Regional differences in stomach contents analysis programs may limit the inclusion of predation mortality in stock assessments, and more guidance is needed on best practices for the prioritization of when and how biophysical information should be considered. However, our results demonstrate that significant progress has been made to use best available science and data to expand single-species stock assessments, particularly when a broad definition of EBFM is applied.


2010 ◽  
Vol 67 (9) ◽  
pp. 1490-1506 ◽  
Author(s):  
Sarah K. Gaichas ◽  
Kerim Y. Aydin ◽  
Robert C. Francis

Examining food web relationships for commercially important species enhances fisheries management by identifying sources of variability in mortality and production that are not included in standard single-species stock assessments. We use a static mass-balance model to evaluate relationships between species in a large marine ecosystem, the coastal Gulf of Alaska, USA. We focus on food web relationships for four case-study species: Pacific halibut ( Hippoglossus stenolepis ), longnose skate ( Raja rhina ), walleye pollock ( Theragra chalcogramma ), and squids (order Teuthoidea). For each, we present the species’ position within the food web, evaluate fishing mortality relative to predation mortality, and evaluate diet compositions. We find that high trophic level (TL) species, whether commercially valuable (halibut) or incidentally caught (skates), have mortality patterns consistent with single-species assessment assumptions, where fishing mortality dominates natural mortality. However, assessments for commercially valuable (pollock) or incidentally caught (squids) mid-TL species can be enhanced by including food web derived predation information because fishing mortality is small compared with high and variable predation mortality. Finally, we outline food web relationships that suggest how production of species may change with diet composition or prey availability.


2007 ◽  
Vol 64 (4) ◽  
pp. 633-639 ◽  
Author(s):  
A. D. M. Smith ◽  
E. J. Fulton ◽  
A. J. Hobday ◽  
D. C. Smith ◽  
P. Shoulder

Abstract Smith, A. D. M., Fulton, E. J., Hobday, A. J., Smith, D. C., and Shoulder, P. 2007. Scientific tools to support the practical implementation of ecosystem-based fisheries management. – ICES Journal of Marine Science, 64: 633–639. Ecosystem-based fisheries management (EBFM) has emerged during the past 5 y as an alternative approach to single-species fishery management. To date, policy development has generally outstripped application and implementation. The EBFM approach has been broadly adopted at a policy level within Australia through a variety of instruments including fisheries legislation, environmental legislation, and a national policy on integrated oceans management. The speed of policy adoption has necessitated equally rapid development of scientific and management tools to support practical implementation. We discuss some of the scientific tools that have been developed to meet this need. These tools include extension of the management strategy evaluation (MSE) approach to evaluate broader ecosystem-based fishery management strategies (using the Atlantis modelling framework), development of new approaches to ecological risk assessment (ERA) for evaluating the ecological impacts of fishing, and development of a harvest strategy framework (HSF) and policy that forms the basis for a broader EBFM strategy. The practical application of these tools (MSE, ERA, and HSF) is illustrated for the southern and eastern fisheries of Australia.


Author(s):  
Ken H. Andersen

This chapter provides some context on the overall themes and theory of this volume. Throughout, the theory is applied to relevant problems in fisheries science: impact of fishing on demography, fisheries reference points, evolutionary impact assessments, stock recovery, ecosystem-based fisheries management, and so on, as well as to basic ecological and evolutionary questions. The chapter begins by addressing the motivations for a new theory of fish stocks and fish communities. It also considers what problems such a theory should address and how such a theory can be formulated. From here, the chapter discusses what makes a good theory and the peculiar challenges fish ecology represents.


Sign in / Sign up

Export Citation Format

Share Document