Influence of strain rates on high temperature deformation behaviors and mechanisms of Ti-5Al-5Mo-5V-3Cr-1Zr alloy

2021 ◽  
Vol 171 ◽  
pp. 110794
Author(s):  
Hui Zhang ◽  
Hui Shao ◽  
Di Shan ◽  
Kaixuan Wang ◽  
Lulu Cai ◽  
...  
2007 ◽  
Vol 340-341 ◽  
pp. 835-840 ◽  
Author(s):  
J.E. Park ◽  
J.B. Jeon ◽  
S. Lee Semiatin ◽  
Chong Soo Lee ◽  
Young Won Chang

Textures developed during hot rolling process may affect the high temperature deformation behaviors of Ti alloys, but their relation has not been well understood or quantitatively analyzed yet. A series of load relaxation and creep tests for hot rolled Ti-6Al-4V alloy has been conducted in this work to clarify the effect of textures on the deformation behaviors of the alloy under 700 °C and the result was analyzed by using an internal variables approach. The internal strength σ* was found to vary significantly by the textures, but not by the temperature change, while the texture effect was found to decrease at higher temperatures.


2014 ◽  
Vol 58 ◽  
pp. 182-186 ◽  
Author(s):  
H.M. Fu ◽  
N. Liu ◽  
A.M. Wang ◽  
H. Li ◽  
Z.W. Zhu ◽  
...  

1990 ◽  
Vol 213 ◽  
Author(s):  
Donald S. Shih ◽  
Gary K. Scarr

ABSTRACTThe hot-workability of a two-phase (γ+α2) alloy, Ti-48A1-2Cr-2Nb, has been studied by conducting isothermal compression tests to 0.8 true strain over the temperature range of 975–1200°C at strain rates between 1×l0−1 and 3×10−3s−1. A deformation map showing temperature, strain rate, soundness of deformation, and isostress contours was constructed. Good workability is found from the low temperature/low strain rate regime to combinations of high temperature and either high or low strain rate. The upper-limit flow stress for good workability is between 450 and 500 MPa. Deformation induced softening occurs at all conditions. SEM and TEM examinations of the deformed specimens reveal that non-uniform deformation takes place at all strain rates, but cracking occurs mostly at high strain rates (e.g. 1×10−1s−1), especially combined with low temperatures. The cracking appears to progress primarily along γ/α2interfaces. It is thought that non-uniform deformation develops channels of shear bands, which in turn promote localized recrystallization, thus accommodating higher strains.


2015 ◽  
Vol 782 ◽  
pp. 61-70
Author(s):  
You Jing Zhang ◽  
Hong Nian Cai ◽  
Xing Wang Cheng ◽  
Shuang Zan Zhao

The high temperature deformation and fracture behavior of ultra-high strength G33 steel under high strain rate compression are investigated by means of a split Hopkinson p ressure bar. Impact tests are performed at strain rates of 1000/s and 2200/s and at temperatures ranging from 25°C to 700°C. The SEM and TEM techniques are also used to analyze the microstructure evolution of the adiabatic shear band (ASB) and fracture characteristics of the deformed specimens at high temperature. The experimental results indicate that the flow stress of G33 steel is significantly dependent on temperatures and strain rates. The flow stress of G33 steel increases with the increase of strain rates, but decreases with the increase of temperatures. The strain rate sensitivity is more pronounced at the low temperature of 25°C. In addition, G33 steel is more liable to fracture at high temperatures than at 25°C. Observations of microstructure show two well-developed symmetric parabolic adiabatic shear bands on the longitudinal cross-section of the cylindrical specimen deformed at the temperature of 700°C and at the strain rate of 2200/s. Within the ASB, the width of the fine equiaxed grain structure is about 7μm. The size of those equiaxed grains is approximately 100nm. The fracture analysis results indicate that the ASBs are the predominant deformation and the specimens fracture along adiabatic shear bands. The fracture surfaces of the deformed G33 steel specimens are characterized by two alternating zones: rough dimple zone and relatively smooth shear zone. Further observations reveal that smooth shear zones consist of severely sheared dimples.


Sign in / Sign up

Export Citation Format

Share Document