Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries

2011 ◽  
Vol 130 (3) ◽  
pp. 831-834 ◽  
Author(s):  
RM. Gnanamuthu ◽  
Chang Woo Lee
2016 ◽  
Vol 724 ◽  
pp. 87-91 ◽  
Author(s):  
Chang Su Kim ◽  
Yong Hoon Cho ◽  
Kyoung Soo Park ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

We investigated the electrochemical properties of carbon-coated niobium dioxide (NbO2) as a negative electrode material for lithium-ion batteries. Carbon-coated NbO2 powders were synthesized by ball-milling using carbon nanotubes as the carbon source. The carbon-coated NbO2 samples were of smaller particle size compared to the pristine NbO2 samples. The carbon layers were coated non-uniformly on the NbO2 surface. The X-ray diffraction patterns confirmed that the inter-layer distances increased after carbon coating by ball-milling. This lead to decreased charge-transfer resistance, confirmed by electrochemical impedance spectroscopy, allowing electrons and lithium-ions to quickly transfer between the active material and electrolyte. Electrochemical performance, including capacity and initial coulombic efficiency, was therefore improved by carbon coating by ball-milling.


2015 ◽  
Vol 1120-1121 ◽  
pp. 115-118 ◽  
Author(s):  
Yong Hoon Cho ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

The electrochemical properties niobium dioxide (NbO2) was investigated as a negative electrode material for lithium ion batteries. The NbO2electrode showed a large irreversible capacity and small discharge capacity. The results of X-ray photoelectron spectroscopy indicate that the poor electrode performance of NbO2may be caused by niobium pentoxide (Nb2O5) formed on the surface of active material. The Nb2O5could be removed by chemical etching to some extent, thus improving the electrode performance.


2001 ◽  
Vol 46 (8) ◽  
pp. 1161-1168 ◽  
Author(s):  
M. Mohamedi ◽  
Seo-Jae Lee ◽  
D. Takahashi ◽  
M. Nishizawa ◽  
T. Itoh ◽  
...  

2019 ◽  
Vol 3 (8) ◽  
pp. 1929-1936
Author(s):  
Go Tei ◽  
Ryohei Miyamae ◽  
Akira Kano

Graphite-like Ca0.6B1.2C4.8 is reported as a novel anode active material for lithium-ion batteries.


NANO ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. 1850135 ◽  
Author(s):  
Xuehua Liu ◽  
Bingning Wang ◽  
Jine Liu ◽  
Zhen Kong ◽  
Binghui Xu ◽  
...  

A one-step high-temperature solvothermal approach to the synthesis of monolayer or bilayer MoS2 anchored onto reduced graphene oxide (RGO) sheet (denoted as MoS2/RGO) is described. It was found that single-layered or double-layered MoS2 were synthesized directly without an extra exfoliation step and well dispersed on the surface of crumpled RGO sheets with random orientation. The prepared MoS2/RGO composites delivered a high reversible capacity of 900[Formula: see text]mAhg[Formula: see text] after 200 cycles at a current density of 200[Formula: see text]mAg[Formula: see text] as well as good rate capability as anode active material for lithium ion batteries. This one-step high-temperature hydrothermal strategy provides a simple, cost-effective and eco-friendly way to the fabrication of exfoliated MoS2 layers deposited onto RGO sheets.


Sign in / Sign up

Export Citation Format

Share Document