A material selection model based on the concept of multiple attribute decision making

2006 ◽  
Vol 27 (4) ◽  
pp. 329-337 ◽  
Author(s):  
A. Shanian ◽  
O. Savadogo
Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 37
Author(s):  
Ye Li ◽  
Yisheng Liu

Considering the advantages of trapezoid fuzzy two-dimensional linguistic variables (TrF2DLVs), which can not only accurately describe the qualitative evaluation but also use qualitative linguistic variables (LVs) to describe the confidence level of this evaluation in the second dimension, this paper proposes a novel method based on trapezoidal fuzzy two-dimensional linguistic information to solve multiple attribute decision-making (MADM) problems with unknown attribute weight. First, a combination weight model is constructed, which covers a subjective weight determination model based on the proposed trapezoidal fuzzy two-dimensional linguistic best-worst method (TrF2DL-BWM) and an objective weight determination model based on the proposed CRITIC method. Then, in order to accurately rank the alternatives, an extended VIKOR-QUALIFLEX method is proposed, which can measure the concordance index of each ranking combination by means of group utility and individual maximum regret value of each evaluation alternative. Finally, a practical problem of lean management assessment for industrial residential projects is solved by the proposed method, and the effectiveness and advantages of the method are demonstrated by comparative analysis and discussion.


Author(s):  
R. V. Rao ◽  
B. K. Patel

Selection of a most appropriate material is a very important task in design process of every product. There is a need for simple, systematic, and logical methods or mathematical tools to guide decision makers in considering a number of selection attributes and their interrelations and in making right decisions. This paper proposes a novel multiple attribute decision making (MADM) method for solving the material selection problem. The method considers the objective weights of importance of the attributes as well as the subjective preferences of the decision maker to decide the integrated weights of importance of the attributes. Furthermore, the method uses fuzzy logic to convert the qualitative attributes into the quantitative attributes. Two examples are presented to illustrate the potential of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Navneet Gupta ◽  
Rituraj Raman

This paper presents a material selection approach for selecting microstrip patch antenna substrate for WLAN applications using multiple attribute decision making (MADM) approach. In this paper, different microwave dielectric materials for substrate and their properties like relative permittivity, quality factor, and temperature coefficient of the resonant frequency are taken into consideration and MADM approach is applied to select the best material for microstrip patch antenna. It is observed that Pb0.6Ca0.4ZrO3 is the best material for the antenna substrate in MPA for WLAN applications. It was observed that the proposed result is in accordance with the experimental finding thus justifying the validity of the proposed study.


Sign in / Sign up

Export Citation Format

Share Document