Numerical simulation of residual stresses fields of DD6 blade during laser shock processing

2013 ◽  
Vol 43 ◽  
pp. 170-176 ◽  
Author(s):  
Yingwu Fang ◽  
Yinghong Li ◽  
Weifeng He ◽  
Yanjun Lu ◽  
Pengyang Li
2011 ◽  
Vol 189-193 ◽  
pp. 3778-3781
Author(s):  
Yin Fang Jiang ◽  
Lei Fang ◽  
Zhi Fei Li ◽  
Zhen Zhou Tang

Laser shock processing is a technique similar to shot peening that imparts compressive residual stresses in materials for improved fatigue resistance. Finite element analysis techniques have been applied to predict the residual stresses from Laser shock processing. The purpose of this paper is to investigate of the different sheet thickness interactions on the stress distribution during the laser shock processing of 7050-T7451 aluminum alloy by using the finite element software. The results indicate that the sheet thickness has little effects on the compression stress in the depth of sheet, but great impacts on the reserve side.


2013 ◽  
Vol 456 ◽  
pp. 125-128
Author(s):  
Bing Yan ◽  
Rui Wang

The aim of this article is to analyze the residual stresses field in a TC4 titanium alloy blade by laser shock processing (LSP).LSP is a new surface processing technology, it uses the laser shock wave to act on the surface of the target and form residual compressive stresses field. The ABAQUS software is applied to simulate the LSP of TC4 titanium alloy blade, and the distributions of the residual stresses field are analysed.After single LSP,the maximum value of residual stress on the surface is 309 MPa.The residual stresses on the surface increase first and then decrease.The residual stresses at the depth continue decreasing with the increase of the depth.After multiple LSP,the maximum value of residual stress on the surface is increased and plastically affected depth is increased.


2015 ◽  
Vol 79 ◽  
pp. 106-114 ◽  
Author(s):  
C. Correa ◽  
A. Gil-Santos ◽  
J.A. Porro ◽  
M. Díaz ◽  
J.L. Ocaña

Author(s):  
Yongxiang Hu ◽  
Zhi Li ◽  
Kangmei Li ◽  
Zhenqiang Yao

Accurate numerical modeling of laser shock processing, a typical complex physical process, is very difficult because several input parameters in the model are uncertain in a range. And numerical simulation of this high dynamic process is very computational expensive. The Bayesian Gaussian process method dealing with multivariate output is introduced to overcome these difficulties by constructing a predictive model. Experiments are performed to collect the physical data of shock indentation profiles by varying laser power densities and spot sizes. A two-dimensional finite element model combined with an analytical shock pressure model is constructed to obtain the data from numerical simulation. By combining observations from experiments and numerical simulation of laser shock process, Bayesian inference for the Gaussian model is completed by sampling from the posterior distribution using Morkov chain Monte Carlo. Sensitivities of input parameters are analyzed by the hyperparameters of Gaussian process model to understand their relative importance. The calibration of uncertain parameters is provided with posterior distributions to obtain concentration of values. The constructed predictive model can be computed efficiently to provide an accurate prediction with uncertainty quantification for indentation profile by comparing with experimental data.


Sign in / Sign up

Export Citation Format

Share Document