tc4 alloy
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 81)

H-INDEX

15
(FIVE YEARS 6)

Author(s):  
Changbang Deng ◽  
Liang Jiang ◽  
Linmao Qian

Abstract Ti-6Al-4V (TC4) alloy has been widely used for implants, and excellent surface quality is required for satisfactory performance. In this study, chemical mechanical polishing (CMP) was introduced to process TC4 alloy. H2O2 and K+ were used to enhance the CMP efficiency. It is revealed that, at pH 10, the material removal rate (MRR) of TC4 alloy increases with the increasing H2O2. A synergistic action between H2O2 and K+ exists under alkaline conditions. With H2O2 and at pH 10, as the K+ concentration increases, the MRR of TC4 alloy first increases and then levels off. The anions have little influence on the CMP performance. After polishing, the surface is smooth without scratches, and the substrate underneath the surface film has no processing damage. For the synergistic action, K+ ions are adsorbed on the Stern layer of the TC4 alloy surface and the silica particles, screening the surface negative charge. Firstly, OOH- produced from H2O2 and OH- can approach the TC4 alloy surface easily, promoting the corrosion. Secondly, more silica particles come into contact with the TC4 alloy surface, enhancing the interactions. Therefore, the MRR increases. The research work brings about a promising high-efficiency CMP process for titanium alloys.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Yuqing Chen ◽  
Guofeng Wang ◽  
Yongkang Liu ◽  
Liqiang Zhan ◽  
He Diao ◽  
...  

Titanium alloys used to be welded to gain good joint strength at 920 °C through diffusion bonding. However, due to the heat preservation at high temperatures for a long time, we obtain joints with great bond strength while the mechanical properties of the sheet are lost. In this paper, taking Ti6Al4V alloy as an example, we studied the microstructure of the surface under the different times of surface mechanical attrition treatment (SMAT). In addition, the microstructure and mechanical properties after diffusion bonding at 800 °C-5 MPa-1 h were also conducted. The results show that the shear strength of TC4 alloy welded joint after SMAT treatment is improved, and the maximum shear strength can reach 797.7 MPa, up about 32.4%


2021 ◽  
Vol 2101 (1) ◽  
pp. 012053
Author(s):  
Pengni Feng ◽  
Baoyu Wang ◽  
Cuiping Yang ◽  
Huibo Zhang

Abstract Production of TC4 alloy hollow shaft formed by cross wedge rolling (CWR) can meet the needs of the lightweight structures in aviation field. Different from the steel, the formability of TC4 alloy is sensitive to deformation temperature. In this work, the formability difference of TC4 alloy hollow shaft and AISI 1045 steel hollow shaft formed by CWR with a mandrel was studied numerically and experimentally. The results show that the influence of temperature on TC4 alloy flow stress is larger than that of 1045 steel, and the peak stress of TC4 alloy at 900 °C is close to that of 1045 steel at 1050 °C. For the hollow shafts of two materials, the ellipticity increases with increasing the inner hole diameter. For the same size of thin-walled billets, the forming quality of TC4 alloy at 900 °C is better than that of 1045 steel at 1050 °C. The CWR temperature range of TC4 alloy is narrower than 1045 steel. The increase of the initial deformation temperature can significantly increase the ellipticity of TC4 alloy and the appropriate forming temperature range of CWR TC4 alloy hollow shaft should be lower than 950 °C. Moreover, the rolling force and torque of TC4 alloy hollow shaft are smaller than that of 1045 steel when CWR hollow billet with the same dimensions.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6570
Author(s):  
Mengjuan Yang ◽  
Chaonan Niu ◽  
Shengpeng Hu ◽  
Xiaoguo Song ◽  
Yinyin Pei ◽  
...  

The brazing of Titanium alloy to Aluminum alloy is of great significance for lightweight application, but the stable surface oxide film limits it. In our work, the surface oxide film was removed by the ion bombardment, the deposited Cu layer by magnetron sputtering was selected as an interlayer, and then the contact reactive brazing of TC4 alloy to Al7075 alloy was realized. The microstructure and joining properties of TC4/Al7075 joints obtained under different parameters were observed and tested, respectively. The results revealed that the intermetallic compounds in the brazing seam reduced with the increased brazing parameters, while the reaction layer adjacent to TC4 alloy continuously thickened. The shear strength improved first and then decreased with the changing of brazing parameters, and the maximum shear strength of ~201.45 ± 4.40 MPa was obtained at 600 °C for 30 min. The fracture path of TC4/Al7075 joints changed from brittle fracture to transgranular fracture, and the intergranular fracture occurred when the brazing temperature was higher than 600 °C and the holding time exceeded 30 min. Our work provides theoretical and technological analyses for brazing TC4/Al7075 and shows potential applications for large-area brazing of titanium/aluminum.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2906
Author(s):  
Xueze Du ◽  
Nana Tian ◽  
Conglin Zhang ◽  
Peng Lyu ◽  
Jie Cai ◽  
...  

In this paper, an Nb alloying layer on a TC4 alloy was fabricated by using high-current pulsed electron beam (HCPEB) irradiation to improve surface performance. X-ray diffraction (XRD), optical microscopy (OM), laser surface microscope (LSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the phase composition and microstructure of the surface layer. The microhardness, wear tests and corrosion resistance were also examined. The results show that after HCPEB alloying, a Nb-alloyed layer was formed with about 3.6 μm in thickness on the surface of the sample, which was mainly composed of α’-Ti martensite, β-Ti equiaxial crystals, and NbTi4 particles. After HCPEB irradiation, the surface hardness, wear resistance and corrosion resistance of Nb alloying layer on TC4 alloy were improved compared to the initial samples.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1688
Author(s):  
Dawei Wang ◽  
Zhiguo Liu ◽  
Wenrui Liu

Titanium alloys have been widely used in aerospace engineering due to their excellent mechanical properties, especially their strength-to-weight ratio. In addition, Ti6Al4V (TC4) alloy is the most widely used among α+β alloys. The main three elements of TC4 alloy are titanium (Ti), aluminum (Al) and vanadium (V). Since the boiling point of aluminum is much lower than the melting point of the other two elements, the consistency of TC4 alloy during smelting, additive manufacturing and surface treatment is difficult to control. Therefore, in order to study the difficult problem of composition control in TC4 alloy production, we measured the vacuum evaporation of Al, Ti and V in Ti-Al, V-Al and TC4 alloys, and tracked the changes of molten pool temperature, heating time and weight. According to the results, the Al started to evaporate near 1300 ± 10 °C in vacuum and totally evaporated after 225 s heating to 1484 °C at 10−2 Pa. However, V and Ti barely evaporated below 2000 °C. The Al in Ti-Al alloy started to evaporate at 1753 ± 10 °C and lost 20.6 wt.% aluminum during 500 s at 1750~1957 °C. The Al in V-Al alloy started to evaporate at 1913 ± 10 °C and lost 26.4 wt.% aluminum during 543s at 1893~2050 °C. The Al in TC4 alloy started to evaporate at 1879 ± 10 °C and lost 79.6 wt. % aluminum after 113 s at 1879~1989 °C. The results indicate that smelting TC4 alloy with Ti-Al and V-Al alloys by EBM below 1900 °C improves the consistency and performance. Additionally, the lowest loss of Al occurred in the additive manufacturing of TC4 alloy below 1900 °C.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1168
Author(s):  
Wei Gao ◽  
Jiangnan Liu ◽  
Jingpeng Wei ◽  
Yuhong Yao ◽  
Xiqun Ma ◽  
...  

By contrast with the traditional method of adding hard particles into micro arc oxidation (MAO) coating to improve its wear performance, this study introduced copper into the MAO coating on TC4 alloy by adding copper pyrophosphate to enhance the wear property in a marine environment and the antibacterial property. The results demonstrated that the MAO coating with copper pyrophosphate addition showed a porous structure, and Cu was mainly concentrated around micropores. CuO and Cu2O were formed in this MAO coating. This MAO coating with Cu had a high bonding strength to the substrate. Although the hardness of the coating with Cu had been reduced, it could reduce the friction coefficient and enhance the wear property in simulated seawater due to the lubrication of Cu. Furthermore, this MAO coating with Cu addition had obvious antibacterial and bactericidal effects due to the antibacterial effect of Cu.


Sign in / Sign up

Export Citation Format

Share Document