Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites

2014 ◽  
Vol 59 ◽  
pp. 63-69 ◽  
Author(s):  
S.M. Suresh Kumar ◽  
D. Duraibabu ◽  
K. Subramanian
2016 ◽  
Vol 47 (2) ◽  
pp. 211-232 ◽  
Author(s):  
G Rajeshkumar ◽  
V Hariharan ◽  
TP Sathishkumar ◽  
V Fiore ◽  
T Scalici

Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental condition. The dynamic mechanical properties of the composites loaded with 40% in volume were analyzed by varying the reinforcement size and the load frequency (i.e., 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz). It was found that the glass transition temperature of short fiber-reinforced composites is higher than that of the composite loaded with particles.


2019 ◽  
Vol 22 (suppl 1) ◽  
Author(s):  
Michelle Souza Oliveira ◽  
Fabio da Costa Garcia Filho ◽  
Fernanda Santos da Luz ◽  
Luana Cristyne da Cruz Demosthenes ◽  
Artur Camposo Pereira ◽  
...  

2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


2016 ◽  
Vol 19 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Emanoel Henrique Portella ◽  
Daiane Romanzini ◽  
Clarissa Coussirat Angrizani ◽  
Sandro Campos Amico ◽  
Ademir José Zattera

Sign in / Sign up

Export Citation Format

Share Document