A new filler metal with low contents of Cu for high strength aluminum alloy brazed joints

2014 ◽  
Vol 63 ◽  
pp. 263-269 ◽  
Author(s):  
W. Luo ◽  
L.T. Wang ◽  
Q.M. Wang ◽  
H.L. Gong ◽  
M. Yan
Alloy Digest ◽  
1962 ◽  
Vol 11 (11) ◽  

Abstract IMPALCO 770 is a heat treatable, high strength aluminum alloy available in bar form for machining applications. It is recommended for highly stressed structural parts. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-120. Producer or source: Imperial Aluminium Company Ltd.


Alloy Digest ◽  
1954 ◽  
Vol 3 (5) ◽  

Abstract Reynolds R301 is a composite material, constituted of a core of high strength aluminum alloy, clad with a corrosion-resistant aluminum alloy. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive, shear, and bearing strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Al-16. Producer or source: Reynolds Metals Company.


2007 ◽  
Vol 55 (6) ◽  
pp. 1975-1984 ◽  
Author(s):  
Y. Xue ◽  
H. El Kadiri ◽  
M.F. Horstemeyer ◽  
J.B. Jordon ◽  
H. Weiland

2012 ◽  
Vol 430-432 ◽  
pp. 881-885
Author(s):  
Cai Jun Gan ◽  
Kai Liao

The level and distribution of residual stresses have great impact on dimensional stability, while Vibratory Stress Relief (VSR) is an effective technology to relax or homogenize residual stresses. Experimental study on residual stresses distribution, residual strain energy and machining deformation of 7075 high-strength aluminum alloy thick plate under different aging process status shows that VSR can effectively decrease the amplitude and strain energy density, and enhance stability of dislocation structures and phase states in metal microscopic volume, then internal residual stresses are homogenized to enhance components’ anti-deformation capacity. In addition, the capability in maintaining dimensional stability from VSR is better than that from traditional mechanical stretching process


Author(s):  
W. Miglietti

Diffusion brazing is a joining process utilized in the manufacture and repair of turbine blades and vanes. MAR-M247 is an investment cast Ni-based superalloy used for turbine blading and has good strength properties at high temperatures. The objectives of this work was to develop a diffusion brazing procedure to achieve high strength joints. A commercially available diffusion brazing filler metal of composition Ni-15Cr-3,5B of 100 μm thickness was used. With the desire to eliminate brittle centre-line phases, the effects of the processing variables (only temperature and time) on the joint microstructure was studied. Once the metallurgy of the joint was understood, mechanical property assessments were undertaken i.e. tensile and creep rupture tests, and the latter being the severest test to evaluate joint strength. The results demonstrated that the diffusion brazed joints had nearly equivalent mechanical strength to that of the parent metal. This showed that the resultant diffusion brazing parameters enabled effective and reliable joining of MAR-M247.


Sign in / Sign up

Export Citation Format

Share Document