Numerical analysis of prestressed reinforced concrete beam subjected to blast loading

2015 ◽  
Vol 65 ◽  
pp. 662-674 ◽  
Author(s):  
Wensu Chen ◽  
Hong Hao ◽  
Shuyang Chen
2018 ◽  
Vol 149 ◽  
pp. 02063
Author(s):  
Yehya Temsah ◽  
Ali Jahami ◽  
Jamal Khatib ◽  
M Sonebi

2018 ◽  
Vol 149 ◽  
pp. 02016 ◽  
Author(s):  
Yehya Temsah ◽  
Ali Jahami ◽  
Jamal Khatib ◽  
M Sonebi

Many engineering facilities are severely damaged by blast loading. Therefore, many manufacturers of sensitive, breakable, and deformed structures (such as facades of glass buildings) carry out studies and set standards for these installations to withstand shock waves caused by explosions. Structural engineers also use these standards in their designs for various structural elements by following the ISO Damage Carve, which links pressure and Impulse. As all the points below this curve means that the structure is safe and will not exceed the degree of damage based on the various assumptions made. This research aims to derive the Iso-Damage curve of a reinforced concrete beam exposed to blast wave. An advanced volumetric finite element program (ABAQUS) will be used to perform the derivation.


2017 ◽  
Vol 21 ◽  
pp. 73-77
Author(s):  
Vasile Murăraşu ◽  
Vasile Mircea Venghiac

This paper presents Strut and Tie Method (STM) general modelling principles of discontinuity zones of structural members. In order to increase the precision for determining the bearing capacity of reinforced concrete beam ends, the possibility of simultaneously using two complementary versions of STM modelling of these extremities, statically determinate, complying with Eurocode 2, is analysed. To highlight the precision and simplicity of simultaneously applying the two modelling versions a numerical analysis is carried out, where the methodology is presented in detail.


2012 ◽  
Vol 588-589 ◽  
pp. 203-207
Author(s):  
Chi Yun Zhao ◽  
Hua Li ◽  
Li Yun Li

The nonlinear behavior of the full scale test of the composite joint between steel reinforced concrete beam and concrete filled steel tubular column under low cyclic reversed loading are simulated by using finite element software ANSYS. A separated model was used, element concrete solid 65, element shell 181 and element link 8 were used to model concrete material, steel members and steel bars respectively. The numerical analysis results are compared with the data of the experimental research. The advantages and shortcoming of the finite element model are given. A better numerical simulation method and a use for reference to the similar case are expected to be afforded.


Sign in / Sign up

Export Citation Format

Share Document