scholarly journals Reinforced Concrete Beam-Column Inverted Knee Joint Behaviour after Ground Corner Column Loss-Numerical Analysis

Author(s):  
B. Abdelwahed ◽  
B. Belkassem ◽  
J. Vantomme
2016 ◽  
Vol 19 (12) ◽  
pp. 1889-1901
Author(s):  
Min Wang ◽  
Dichuan Zhang ◽  
Jainping Fu

Regular reinforced concrete beam–column knee joints are typically framed by beams and columns with similar heights. However, complexities in modern architecture layouts may result in irregular geometries for the knee joint. The irregular geometry refers to significant differences in the height for the beam and the column framing into the joint. For example, the height of the beam is considerably larger than that of the column, and vice versa. Seismic performance and behavior for the regular knee joint have been well examined through previous experimental research. However, the knee joint with irregular geometry (termed here as irregular knee joint) may have different seismic behaviors compared to the regular knee joint because the irregular geometry can produce different demands, stiffness, strength, and reinforcing bond conditions. Therefore, this article evaluates seismic behavior of the irregular knee joint including failure mode, strength and stiffness degradation, deformation capacity, bond-slip of reinforcement, and energy dissipation capacity through four large-scale static cyclic tests. The test results show that in general the irregular knee joint designed to the current code has low seismic capacity due to poor bond conditions of the reinforcement inside the joint.


2017 ◽  
Vol 21 ◽  
pp. 73-77
Author(s):  
Vasile Murăraşu ◽  
Vasile Mircea Venghiac

This paper presents Strut and Tie Method (STM) general modelling principles of discontinuity zones of structural members. In order to increase the precision for determining the bearing capacity of reinforced concrete beam ends, the possibility of simultaneously using two complementary versions of STM modelling of these extremities, statically determinate, complying with Eurocode 2, is analysed. To highlight the precision and simplicity of simultaneously applying the two modelling versions a numerical analysis is carried out, where the methodology is presented in detail.


2012 ◽  
Vol 588-589 ◽  
pp. 203-207
Author(s):  
Chi Yun Zhao ◽  
Hua Li ◽  
Li Yun Li

The nonlinear behavior of the full scale test of the composite joint between steel reinforced concrete beam and concrete filled steel tubular column under low cyclic reversed loading are simulated by using finite element software ANSYS. A separated model was used, element concrete solid 65, element shell 181 and element link 8 were used to model concrete material, steel members and steel bars respectively. The numerical analysis results are compared with the data of the experimental research. The advantages and shortcoming of the finite element model are given. A better numerical simulation method and a use for reference to the similar case are expected to be afforded.


2018 ◽  
Vol 149 ◽  
pp. 02063
Author(s):  
Yehya Temsah ◽  
Ali Jahami ◽  
Jamal Khatib ◽  
M Sonebi

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiao Guo ◽  
Hongwei Wang ◽  
Kaizhong Xie ◽  
Tuo Shi ◽  
Dan Yu

In order to study the influence of corrosion rate and shear span ratio on reinforced concrete beam, a numerical analysis method of corroded reinforced concrete beam was put forward. Bond-slip relationship formula between reinforcement and concrete was suggested. A three-dimensional finite element model of corroded reinforced concrete beam was established. Calculation method of ultimate bearing capacity for reinforced concrete beam was suggested. Ultimate bearing capacity experiment on 14 corroded reinforced concrete beams with different corrosion rates and shear span ratios was carried out. Numerical analysis results and experimental results were compared and analyzed. The results show that, for reinforced concrete beams with different corrosion rates and shear span ratios, load-deflection curve can be divided into elasticity stage and plasticity stage. With the increase of corrosion rate and shear span ratio, ultimate bearing capacity of corroded reinforced concrete beam decreased. When shear span ratio was 3.0, if corrosion rate increased by 1%, experimental value of ultimate bearing capacity decreased by 1.002 kN. When shear span ratio was 2.4, if corrosion rate increased by 1%, experimental value of ultimate bearing capacity decreased by 1.849 kN. The numerical analysis method put forward in this paper was feasible, and the suggested ultimate bearing capacity calculation method for reinforced concrete beam has a high accuracy.


Sign in / Sign up

Export Citation Format

Share Document