In-situ monitoring of strain and temperature distributions during fused deposition modeling process

2016 ◽  
Vol 97 ◽  
pp. 400-406 ◽  
Author(s):  
Charoula Kousiatza ◽  
Dimitris Karalekas
2021 ◽  
pp. 2101027
Author(s):  
Mengnan Zhou ◽  
Mengya Li ◽  
Junjie Jiang ◽  
Ning Gao ◽  
Fangwei Tian ◽  
...  

Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


Author(s):  
Holm Altenbach ◽  
◽  
G´abor Janiga ◽  
Rene Androsch ◽  
Mario Beiner ◽  
...  

With increasing usage of additive manufacturing methods for mechanical parts the need for precise and reliable simulations of the manufacturing process increases as well. In this paper various com- putations suited for simulating the fused deposition modeling process are considered in two dimensions. In fused deposition modeling a molten polymer is laid down on a prescribed path before the cooling of the melt begins. The occuring flows are treated as multiphase flows. To model the deposition of the filament, methods of computational fluid dynamics are used in ANSYS-Fluent, namely the volume of fluid method (VOF). Different numerical experiments are simulated


Sign in / Sign up

Export Citation Format

Share Document