scholarly journals Homogenization-induced age-hardening behavior and room temperature mechanical properties of Mg-4Zn-0.5Ca-0.16Mn (wt%) alloy

2019 ◽  
Vol 164 ◽  
pp. 107554 ◽  
Author(s):  
Partha Duley ◽  
Souriddha Sanyal ◽  
T.K. Bandyopadhyay ◽  
Sumantra Mandal
2018 ◽  
Vol 877 ◽  
pp. 137-148
Author(s):  
Maruff Hussain ◽  
P. Nageswara Rao ◽  
Dharmendra Singh ◽  
R. Jayaganthan

The present work investigates about the effect of pre-ageing on hardening behavior of Al-Mg-Si alloys processed by cryorolling and its age hardening behavior. Ageing conditions were examined at natural ageing for 2days and pre-ageing at 100 °C, 130°C and 170 °C for 4 hours, 2 hours and 30 minutes respectively. The observations revealed that, the pre-ageing before cryorolling is useful to enhance the dislocation density during cryorolling. However artificial ageing of cryorolled samples is not influenced much with pre-ageing. It is revealed that, maturing at room temperature of CR samples for 30 days has resulted better hardening response during artificial ageing.


2013 ◽  
Vol 750 ◽  
pp. 76-79 ◽  
Author(s):  
Mohammad Rizviul Kabir ◽  
Marion Bartsch ◽  
Liudmila Chernova ◽  
Janine Schneider ◽  
Klemens Kelm

At room temperature the macroscopic tensile behavior of TiAl alloys is extremely microstructure sensitive. In general the microstructures of TiAl alloys are heterogeneous at micro and meso scale. The materials micromechanisms that occur at different length scale have to be linked for a proper understanding of the macroscopic response. In order to explore those micromechanisms, methodologies combining advanced experimental and computational analysis have been proposed. Linking microstructure and properties using a two-scale numerical model we are able to explain the stress-strain and hardening behavior of this alloy.


2016 ◽  
Vol 879 ◽  
pp. 1629-1633
Author(s):  
Seiji Saikawa ◽  
Chiharu Otsubo ◽  
Susumu Ikeno ◽  
Koichi Komai

Al-Li alloys have higher mechanical properties and more lightweight than other conventional aluminum alloys. Therefore , it is focused as a good material for weight reduction of industrial fields. However, since the Al-Li alloy are highly active and hard to cast, there has been limited research on casting. In this study, age-hardening behavior of Al-2.5mass%Li alloys cast into sand and metal mold were investigated. All alloys cast into Y-block shape sand mold, and then artificial aged after solution treated at 743K for 36ks. Because of difference in quantity of precipitation by metastable δ’(Al3Li) phase, peak hardness of metal mold casting is higher than that of sand molds castings.


2020 ◽  
Vol 326 ◽  
pp. 03002
Author(s):  
Takuya Hashimoto ◽  
Ken-ichi Ikeda ◽  
Seiji Miura

Nanoindentation tests were conducted near the grain boundary (GB) of the Al-Mg-Si alloy, and the influence of GB character on the aging precipitation behavior and the mechanical properties was confirmed. After obtaining the GB characters by electron back scattered diffraction (EBSD) analysis, nanoindentation tests were carried out on under-aged, peak-aged, and over-aged samples. And then, the indentation areas were observed by back scattered electrons imaging (BSE) in order to identify indentation positions with respect to the GB. In this study, for the GB character, focusing on the rotation angle, the high-angle GB (HAGB) and the low-angle GB (LAGB) were selected. In addition, coincident site lattice GBs (CSL) were selected as the special GB. In the 180°C under-aged samples, the nano-hardness near GB is higher than that far from GB, while 180°C peak-aged samples, the nano-hardness is lower than that far from GB. Then the range near the GB where the hardness changes was larger at HAGB than at LAGB and CSL3. This suggests that the GB character affects the aging precipitation behavior and mechanical properties.


2005 ◽  
Vol 20 (6) ◽  
pp. 1515-1522 ◽  
Author(s):  
R.S. Sundar ◽  
S.C. Deevi ◽  
B.V. Reddy

Age-hardening behavior of a new generation of FeCo alloys [Fe–40Co–5V–0.005B–0.015C–0.5Mo–0.5Nb (at.%)] is characterized by microhardness, tensile testing, electrical resistivity, and magnetic properties. The alloy exhibits maximum hardening when aged at 600 °C. Precipitation of γ2 (V-rich face-centered cubic phase) during aging appears to be responsible for the observed hardening behavior. The alloy exhibits superior creep resistance when subjected to solutionizing in γ phase field and aged at 600 °C. On the other hand, the room temperature tensile ductility of the aged alloy depends on the grain size, which in turn can be controlled by varying the solutionizing condition. The age-hardened alloy exhibits a room temperature electrical resistivity of 70–75 μΩ cm. The higher resistivity of the present alloy as opposed to the commercial FeCo–2V alloys is attributed to the high V content of the alloy. Structure-sensitive magnetic properties like coercivity and core losses of the alloy are affected by the aging treatment, and the maximum coercivity is observed when the alloy is aged at 600 °C. High coercivity of the alloy is attributed to the fine distribution of paramagnetic γ2 precipitate, fine grain size, and internal stress arising from phase transformation.


Sign in / Sign up

Export Citation Format

Share Document