peak hardness
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 27)

H-INDEX

11
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Bharat Mehta ◽  
Arvid Svanberg ◽  
Lars Nyborg

This study shows a rapid and systematic approach towards identifying full density and peak hardness for an Al-Mg-Sc-Zr alloy commonly known as Scalmalloy®. The alloy is tailored for the laser powder bed fusion process and has been shown to be printable with >99.8% relative density. The microstructure suggests Al grain refinement in melt pool boundaries, associated with formation of primary Al3(Sc,Zr) particles during solidification. Peak hardening response was identified by heat treatment tests at 573,598 and 623 K between 0 and 10 h. A peak hardness of 172 HV0.3 at 598 K for 4 h was identified. The mechanical properties were also tested with yield and ultimate strengths of 287 MPa and 364 MPa in as-printed and 468 MPa and 517 MPa in peak hardened conditions, respectively, which is consistent with the literature. Such an approach is considered apt when qualifying new materials in industrial laser powder bed fusion systems. The second part of the study discusses the thermal stability of such alloys post-peak-hardening. One set of samples was peak hardened at the conditions identified before and underwent secondary ageing at three different temperatures of 423,473 and 523 K between 0 and 120 h to understand thermal stability and benchmark against conventional Al alloys. The secondary heat treatments performed at lower temperatures revealed lower deterioration of hardness over ageing times as compared to the datasheets for conventional Al alloys and Scalmalloy®, thus suggesting that longer ageing times are needed.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5876
Author(s):  
Vishwa Bhanu ◽  
Dariusz Fydrych ◽  
Ankur Gupta ◽  
Chandan Pandey

This investigation attempts to explore the weld characteristics of a laser welded dissimilar joint of ferritic/martensitic 9Cr-1Mo-V-Nb (P91) steel and Incoloy 800HT austenitic nickel alloy. This dissimilar joint is essential in power generating nuclear and thermal plants operating at 600–650 °C. In such critical operating conditions, it is essential for a dissimilar joint to preserve its characteristics and be free from any kind of defect. The difference between the physical properties of P91 and Incoloy 800HT makes their weldability challenging. Thus, the need for detailed characterization of this dissimilar weld arises. The present work intends to explore the usage of an unconventional welding process (i.e., laser beam welding) and its effect on the joint’s characteristics. The single-pass laser welding technique was employed to obtain maximum penetration through the keyhole mode. The welded joint morphology and mechanical properties were studied in as-welded (AW) and post-weld heat treatment (PWHT) conditions. The macro-optical examination shows the complete penetrations with no inclusion and porosities in the weld. The microstructural study was done in order to observe the precipitation and segregation of elements in dendritic and interface regions. Solidification cracks were observed in the weld fusion zone, confirming the susceptibility of Incoloy 800HT to such cracks due to a mismatch between the melting point and thermal conductivity of the base metals. Failure from base metal was observed in tensile test results of standard AW specimen with a yield stress of 265 MPa, and after PWHT, the value increased to 297 MPa. The peak hardness of 391 HV was observed in the P91 coarse grain heat-affected zone (CGHAZ), and PWHT confirmed the reduction in hardness. The impact toughness results that were obtained were inadequate, as the maximum value of impact toughness was obtained for AW P91 heat-affected zone (HAZ) 108 J and the minimum for PWHT Incoloy 800HT HAZ 45 J. Thus, difficulty in obtaining a dissimilar joint with Incoloy 800HT using the laser beam welding technique was observed due to its susceptibility to solidification cracking.


2021 ◽  
Vol 15 (57) ◽  
pp. 350-358
Author(s):  
Hiralal S. Patil ◽  
D. C. Patel

Magnesium alloys have generated renewed interest as a light alloys; replacing some conventional structural materials for weight reduction in applications like aerospace, automotive and electronics industries. In interior components and powertrains, cast alloys are widely used and represent more than 99% of magnesium alloys used today, whereas only a few wrought products are used. Mostly in automotive applications, Mg-engine block can noticeably reduce the weight and consequently its fuel consumption and environmental impact. Due to solid-state precipitates, these alloys are strong in nature and are produced by an age-hardening heat treatment process. In the present work the age hardening behavior of the as cast Mg–Zn–Al alloys (ZA85 alloy) in the composition of 8 wt. %Zn, 5 wt. %Al has been investigated. Through the differential thermal analysis (DTA) studies, it has been found out that dissolution temperature of ternary eutectic precipitates is present in the alloy. Based on the DTA results, the as cast samples have been solutionised at 360 °C temperature for different intervals of time. Solutionising time has been optimized from the enthalpy values of un-dissolved precipitates. The solution treated samples have been then aged at temperature of 180° C for different time intervals. From the peak hardness values, the ageing conditions have been optimized.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 532
Author(s):  
Niklas Sommer ◽  
John Michael Lehto ◽  
Stephan Völkers ◽  
Stefan Böhm

In the investigation at hand, sheets of ferritic and pearlitic grey cast iron with spheroidal graphite are welded using a fiber-laser. The influence of varying laser power and welding speed on the macroscopic characteristics of the weld seam and crack formation are analyzed and discussed. Substantial crack formation with crack densities of up to 2.93/cm are found. Furthermore, hardness measurements are conducted to evaluate the formation of brittle phases within the weld metal and heat-affected zone. Peak hardness values of up to 860 HV0.3 and 975 HV0.3 are identified in EN-GJS-400-15 and EN-GJS-700-2, respectively. Subsequently, a proposition on the dependence of crack formation on weld seam width is given. Furthermore, the influence of nickel-containing filler material on the microstructure, crack formation and hardness is studied. It can be derived from the results that laser-beam welding of grey cast iron with spheroidal graphite requires further research in order to achieve crack-free weld seams and hinder the formation of undesirable, brittle phases.


2021 ◽  
Vol 21 (3) ◽  
pp. 1943-1947
Author(s):  
Shah Abdul Wahid ◽  
Seong-Ho Ha ◽  
Bong-Hwan Kim ◽  
Young-Ok Yoon ◽  
Hyun-Kyu Lim ◽  
...  

This study examines the formation of different phases of Al-6 mass% Mg–xCu (x = 1 and 3 mass%) alloys in as-cast condition. Further, it investigates the dissolution of these phases upon solution heat treatment (SHT) and studies the precipitation behavior of these ternary alloys. Scanning electron microscopy with energy-dispersive spectrometry and high resolution X-ray diffraction analyses show the presence of the second phases of Al3Mg2 (β), Al6CuMg4 (T), and Al2CuMg (S) in Alloy I (Al–6Mg–1Cu), whereas Alloy II (Al–6Mg–3Cu) had only T and S second phases (with a much higher number of S phases). Upon SHT, a significant number of eutectic phases were dissolved in Alloy I, whereas in Alloy II, the number of undissolved S phases was relatively high. A differential scanning calorimetry (DSC) analysis of experimental alloys in as-quenched states reveals two exothermic peaks related to the formation of nanoclusters and S″ or S′ metastable phases. Both alloys undergo a rapid hardening stage during the aging process, in which approximately 50%–60% of total hardness was achieved. This is attributed to the formation of nanoclusters. The maximum yield strength achieved at the peak hardness condition was approximately 200 MPa for Alloy I, whereas it was approximately 160 MPa for alloy II. Alloy I took a long time to reach peak hardness, which is correlated with the stability of nanoclusters for a longer time. Earlier peak hardness in Alloy II, despite having nanoclusters, is correlated with undissolved eutectic phases acting as heterogeneous nucleation sites for the formation of S″ or S′ metastable phases.


2021 ◽  
Vol 39 ◽  
pp. 1-8
Author(s):  
Monoj Baruah ◽  
Anil Borah

In this study both natural ageing (NA) and artificial ageing (AA) behaviour of Al-Mg-Si aluminium alloy having trace addition of 0.04 wt.% Sn (Tin) was studied at different solution heat treatment (SHT) temperature and time, ageing time and temperatures. Microstructural analysis was performed to identify the intermetallic phases. It was observed that peak NA hardness strongly depends on the SHT temperature and time. SHT at 530 for 0.5 hour, slows down the peak NA hardness attaining time of the alloy to a maximum of 5 days. But as the SHT time increases to 3.5 hours, the peak NA hardness attaining time reduced to 1 day. Alloy SHT at 530 for 1 hour attain a maximum peak hardness of HRB 24 during 3 days of NA. Artificial ageing improved the hardness of the NA alloy to a maximum of HRB 41 during 12 hours of ageing at 190 . The overall hardness of Al-Mg-Si-Sn as-cast alloy increases by 32 % during ageing process.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Jianyi Cheng ◽  
Fangxin Yu ◽  
Fu Huang

Cu-Ni-Si alloys are widely used in electrical and electronic industry owing to excellent electrical conductivity and strength. A suitable addition of Co in the Cu-Ni-Si alloys can improve its strength and deteriorate its electrical conductivity. In this work, Cu-Ni-Co-Si-P-Mg alloys with different Co content are employed to investigate the effects of Co on the properties and microstructure. The results showed that Co addition lead to the formation of (Ni, Co)2Si precipitates. (Ni, Co)2Si precipitate is harder to coarsen than δ-Ni2Si during aging. The larger the Co content in the alloys is, the smaller the precipitates formed is. There exists a threshold content of Co to divide the studied alloys into two groups. One group of theses alloys with <1 wt.% Co or Co/Ni ratio <0.56 has the same aging behavior as the Cu-Ni-Si-P-Mg alloy. On the contrary, the time to reach the peak hardness of aging for another group can be obviously delayed and its electrical conductivity decreases slightly with the increase of Co content. It can be attributed to the lower diffusion rate of Co than that of Ni in the Cu matrix. Meanwhile, the Co addition can inhibit the formation of P-enriched Ni-P phase in Co-containing alloys during aging. The as-quenched Cu-1.6Ni-1.2Co-0.65Si-0.1P-0.05Mg alloy can reach 257 HV and 38.7%IACS after aging at 500 °C for 3 h, respectively.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 30
Author(s):  
Sidharth Rajan ◽  
Priti Wanjara ◽  
Javad Gholipour ◽  
Abu Syed Kabir

This paper presents the microstructural characteristics and mechanical properties of linear friction-welded (LFWed) Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) in as-welded (AWed) and stress relief-annealed (SRAed) conditions. The weld center (WC) of the AWed Ti-6242 consisted of recrystallized prior-β grains with α’ martensite that were tempered during SRA at 800 °C for 2 h and transformed into an acicular α + β microstructure. The peak hardness values, obtained in the AWed joints at the WC, sharply decreased through the thermomechanically affected zones (TMAZs) to the heat-affected zone (HAZ) of the Ti-6242 parent metal (PM). The SRA lowered the peak hardness values at the WC slightly and fully recovered the observed softening in the HAZ. The tensile mechanical properties of the welds in the AWed and SRAed conditions surpassed the minimum requirements in the AMS specifications for the Ti-6242 alloy. Fatigue tests, performed on the SRAed welds, indicated a fatigue limit of 468 MPa at 107 cycles, just slightly higher than that of the Ti-6242 PM (434 MPa). During tensile and fatigue testing, the welds failed in the PM region, which confirms the high mechanical integrity of the joints. Both the tensile and fatigue fracture surfaces exhibited characteristic features of ductile Ti-6242 PM.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5386
Author(s):  
Yuqing Sun ◽  
Gaolei Xu ◽  
Xue Feng ◽  
Lijun Peng ◽  
Guojie Huang ◽  
...  

Cu–Cr-based alloys exhibit excellent electrical conductivity and strength, but their poor thermal stability limits their application in industry. In this paper, Cu–0.2Cr (at. %) and Cu–0.2Cr–0.12Ag (at. %) alloys were prepared to study the effect of Ag on the properties, microstructure, and thermal stability of the Cu–Cr alloy. Microstructure and precipitation were observed by an optical microscope (OM) and a transmission–electron microscope (TEM). After cold-drawing by 99.9% and aging at 450 °C for 2 h, the peak hardness and electric conductivity of the Cu–Cr alloy were 120.3 HV and 99.5% IACS, respectively, and those of the Cu–Cr–Ag alloy were 135.8 HV and 98.3% IACS, respectively. The softening temperature of the Cu–Cr alloy was 500~525 °C, and that of the Cu–Cr–Ag alloy was about 550 °C. The creep strains of the Cu–Cr and Cu–Cr–Ag alloys at 40 MPa and 400 ℃ for 50 h were 0.18% and 0.05%, respectively. Ag elements improved the thermal stability of the Cu–Cr alloy. Recovery and recrystallization occurred before the coarsening of precipitates during the softening process. Ag atoms mainly improved the softening resistance of the alloy by delaying recrystallization, and mainly increased creep resistance by preventing the increase in mobile-dislocation density.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1361
Author(s):  
Shreyas Hebbar ◽  
Lukas Kertsch ◽  
Alexander Butz

A major challenge in processing 7xxx series aluminum alloys is their limited formability at room temperature. In this paper, for the alloys EN AW-7020 and EN AW-7075, various variants of the W-temper forming process are investigated. For both alloys, a good cold formability and a high strength after aging can be achieved. The effects of solution heat treatment or retrogression temperature and holding time, as well as the influence of plastic deformation after quenching, were studied. For various combinations of process parameters, the formability of the as-quenched materials and the hardening performance during artificial aging were examined. For this, hardness measurements and differential scanning calorimetry (DSC) experiments were performed along the entire process chain, to reveal the development of the hardening precipitates. After solution heat treatment and quenching, the yield stress and hardness of both investigated alloys were drastically reduced in comparison to their initial T6 states, while the ductility was significantly increased. By a subsequent simple artificial aging treatment, the same hardness as in the T6 state could be restored. It was observed that plastic deformation immediately after quenching significantly decreased the artificial aging time to achieve the peak hardness. Besides the conventional solution heat treatment process, an alternative retrogression and re-aging procedure was identified for the alloy EN AW-7020. While the heat treatment temperature can be reduced as compared to the conventional solution heat treatment, the formability and hardenability are equally good. In contrast, no such alternative process could be identified for the alloy EN AW-7075.


Sign in / Sign up

Export Citation Format

Share Document