Multi-walled carbon nanotubes produced by hydrogen DC arc discharge at elevated environment temperature

2007 ◽  
Vol 61 (2) ◽  
pp. 389-391 ◽  
Author(s):  
Xiaolong Song ◽  
Yongning Liu ◽  
Jiewu Zhu
2005 ◽  
Vol 900 ◽  
Author(s):  
Hyeon Hwan Kim ◽  
Hyeong Joon Kim

ABSTRACTCarbon nanotubes (CNTs) were grown using a dc arc discharge process and relevant process parameters were investigated. Unlike the usual process in which a carbon anode is filled with metal catalyst powder, CNTs were prepared using a carbon cathode on which the metal catalyst had been deposited using an electroplating system. Various transition metals, Ni, Co and Ti, were used as a catalyst. The results show that multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) can both be synthesized using this technique. And yield and morphology of the prepared CNTs varied depending on the experimental condition and catalyst. While MWNTs were produced in the deposit and soot sample, SWNTs with diameters near 1nm were only detected in the soot collects. When Ni film was used as a catalyst, the yield of SWNTs was higher than in case of using Co or Ti film as a catalyst. From these results, the optimized preparing condition of CNTs and the properties of a good catalyst are discussed.


2008 ◽  
Vol 8 (7) ◽  
pp. 3539-3544 ◽  
Author(s):  
Sreejarani K. Pillai ◽  
Willem G. Augustyn ◽  
Margaretha H. Rossouw ◽  
Robert I. McCrindle

Multi-walled carbon nanotubes were synthesized by dc-arc discharge in helium atmosphere and the effect of calcination at different temperatures ranging from 300–600 °C was studied in detail. The degree of degradation to the structural integrity of the multi-walled carbon nanotubes during the thermal process was studied by Raman spectroscopy, Scanning electron microscopy and High resolution transmission electron microscopy. The thermal behaviour of the as prepared and calcined samples was investigated by thermogravimetric analysis. Calcination in air at 400 °C for 2 hours was found to be an efficient and simple method to eliminate carbonaceous impurities from the nanotube bundles with minimal damage to the tube walls and length. The impurities were oxidized at a faster rate when compared to the nanotubes and gave good yield of about 50%. The nanotubes were observed to be damaged at temperature higher than 450 °C. The results show that this method is less destructive when compared liquid phase oxidation with 5 M HNO3.


Carbon ◽  
2012 ◽  
Vol 50 (12) ◽  
pp. 4588-4595 ◽  
Author(s):  
Yoong Ahm Kim ◽  
Hiroyuki Muramatsu ◽  
Takuya Hayashi ◽  
Morinobu Endo

Nanoscale ◽  
2018 ◽  
Vol 10 (37) ◽  
pp. 17824-17833 ◽  
Author(s):  
Yifan Zhang ◽  
Junwei Zhao ◽  
Yanghao Fang ◽  
Yi Liu ◽  
Xinluo Zhao

Research widely broadened the suitable condition to produce long linear carbon chain inside multi-walled carbon nanotubes and discussed the mechanism.


Author(s):  
KK Singh ◽  
SK Chaudhary ◽  
R Venugopal ◽  
A Gaurav

This work proposes the production of multi-walled carbon nanotubes by AC arc discharging of spectroscopically pure graphite electrodes of different shapes, that is, movable cylindrical and stationary rectangular electrode by manual metal arc welding setup. Continuous arc was generated by maintaining the gap of about 3 mm between the electrodes which in turn formed the plasma zone. Vaporization of carbon cations followed by sudden quenching paved the way for formation of carbon nantotubes. Nanotubes produced were deposited on the stationary graphite electrode in the form of soot. Further extraction of the nanoparticles from the soot was performed by conducting series of purification processes which will be discussed in upcoming chapters. Morphology and purity of the extracted nanotubes were investigated by X-ray diffraction, scanning electron microscopy, field-emission scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Following the characterization process, it was observed that the so-produced nanotubes were of different shapes, that is, carbon cone nanotubes, nanocapsules, nanoparticles and branching type and randomly oriented. The length of the nanotubes varied from 231 to 561 nm, whereas diameter was found to be in the range of 14–55 nm.


2011 ◽  
Vol 8 (2) ◽  
pp. 123-128 ◽  
Author(s):  
M. Haneef ◽  
Jamil Abdo ◽  
Syed Ullah ◽  
S. Waqar ◽  
Fayaz Hussain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document