Effect of Sisal Fibre Loading on Dynamic Mechanical Analysis and Water Absorption Behaviour of Jute Fibre Epoxy Composite

2015 ◽  
Vol 2 (4-5) ◽  
pp. 2909-2917 ◽  
Author(s):  
M.K. Gupta ◽  
R.K. Srivastava
2018 ◽  
Vol 25 (5) ◽  
pp. 2020-2028 ◽  
Author(s):  
Subhash Nimanpure ◽  
S. A. R. Hashmi ◽  
Rajnish Kumar ◽  
Archana Nigrawal ◽  
Ajay Naik

Author(s):  
A Arul Jeya Kumar ◽  
M Prakash

In today's scenario, most of the research works are carried out on the replacement of synthetic fibers using eco-friendly materials called natural fibers. Although there are many research findings in connection with natural fibers, in this work, a new combination of natural fiber having high biomedical potential is reinforced in the polymer composite. Three different weight fractions of polylactic acid, basalt, and Cissus quadrangularis fibers were melt mixed using twin-screw extruder named as PBCQ 1, PBCQ 2, and PBCQ 3. The mechanical, physical, and thermomechanical properties were studied by testing tensile, flexural, impact, hardness, water absorption, Fourier-transform infrared spectroscopy, and dynamic mechanical analysis of the injection-molded biomedical composite specimens prepared as per ASTM standards. It was noticed that the PBCQ 2 composite has the maximum elongation strength, bending strength, shear strength, and shore D hardness compared to other composites taken in this study. Water absorption of PBCQ 1 and PBCQ 2 composites are relatively less than PBCQ 3. The scanning electron microscopy micrograph of PBCQ composites shows tight bonding between the matrix and fibers. The adhesion of matrix and fibers was confirmed by Fourier-transform infrared spectroscopy graph, which indicates the stretching of molecular structure for the occurrence of O–H, C=O, and C–H links. The dynamic mechanical analysis curve of the PBCQ 2 composite indicates high storage modulus and less loss modulus compared to PBCQ 1 and PBCQ 3 due to the low weight percentage of basalt fiber in these composites.


2018 ◽  
Vol 53 (1) ◽  
pp. 65-72 ◽  
Author(s):  
MK Gupta ◽  
Rohit Singh

In the present work, a novel physical treatment (PLA coating) of sisal fibres and its influence on the water absorption, static and dynamic mechanical properties of its composites has been presented. The treated sisal fibres were used consisted of alkali treatment and PLA coating to fabricate its polyester-based composites by hand lay-up technique keeping constant fibres content as 20 wt.% . Water absorption analysis was carried out in terms of water uptake (%), and sorption, diffusion and permeability coefficient. In addition, static properties were examined in terms of tensile, flexural and impact test, and dynamic mechanical analysis was performed in terms of storage modulus [Formula: see text], loss modulus [Formula: see text], damping [Formula: see text] and glass transition temperature [Formula: see text]. It was reported that the PLA-coated sisal composites showed the best performance in water absorption, mechanical and dynamic mechanical properties than pure sisal and alkali-treated sisal composites. There were 33%, 49%, 48%, and 27% improvement in water resistance, tensile strength, flexural strength and impact strength, respectively, of PLA-coated sisal composites as compared to that of pure sisal composite.


Sign in / Sign up

Export Citation Format

Share Document