deposition height
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yazhou Zhang ◽  
Ming Gao ◽  
Yang Lu ◽  
Wenbo Du

Abstract A cold metal transfer pulse advance (CMT-PA) arc mode was employed in this paper for the additive manufacturing of Al alloy. The effects of process parameters on the surface morphology and effective width percentage were investigated. And a deposition width model was built by the multiple linear regressions. Based on the principle that the volume of sample is equal to that of filler wire, a deposition height model was simultaneously derived. The results show that the process parameters affect the trends of droplet spreading in horizontal direction and molten pool tangential direction by changing the heat input and arc force. The disparity between two trends directly determines the final deposition geometrical characteristics. The influences of three factors on the effective width percentage show a trend of first increasing and then decreasing. So it provides a process window of good deposition forming. Using the optimal parameter in the window, the effective width percentage reaches to 83% and machining allowance is only 0.8 mm, which significantly improves materials utilization and reduces manufacturing costs. Besides, the error rates of deposition width and height models are less than 4% and 6%, respectively. Two models can facilitate manufacturing different size parts and make a profit for the actual production.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaoyuan Chen ◽  
Tianbiao Yu ◽  
Ying Chen ◽  
Wanshan Wang

Purpose The purpose of this paper is to improve the dimensional accuracy of inclined thin-walled parts fabricated by laser direct metal deposition (DMD) under an open-loop control system. Design/methodology/approach In this study, a novel method of the adaptive slicing method and DMD process with feedback adjustment of deposition height has been developed to successively fabricate complex inclined thin-walled square tube elbow parts. The defocus amount was used as a variable to the matching between the deposition thickness and the adaptive slicing height. Findings The low relative error of dimensional accuracy between experimental and designed parts shows that the matching of the single-layer deposition thickness and the adaptive slicing height can be realized by optimizing the defocusing amount. The negative feedback of the thin-wall part height can be achieved when the defocus amount and the z-axis increment are less than deposition thickness. The improvement of dimensional accuracy of inclined thin-walled parts is also attributed to the optimized scanning strategy. Practical implications The slicing method and deposition process can provide technical guidance for other additive manufacturing (AM) systems to fabricate metal thin-walled parts with high dimensional accuracy because the feedback control of deposition height can be realized only by the optimized process. Originality/value This study provides a novel adaptive slice method and corresponding the deposition process, and expands the slicing method of AM metal parts.


2021 ◽  
Vol 13 (12) ◽  
pp. 2391
Author(s):  
Sobhan Emtehani ◽  
Victor Jetten ◽  
Cees van van Westen ◽  
Dhruba Pikha Shrestha

Floods are frequent hydro-meteorological hazards which cause losses in many parts of the world. In hilly and mountainous environments, floods often contain sediments which are derived from mass movements and soil erosion. The deposited sediments cause significant direct damage, and indirect costs of clean-up and sediment removal. The quantification of these sediment-related costs is still a major challenge and few multi-hazard risk studies take this into account. This research is an attempt to quantify sediment deposition caused by extreme weather events in tropical regions. The research was carried out on the heavily forested volcanic island of Dominica, which was impacted by Hurricane Maria in September 2017. The intense rainfall caused soil erosion, landslides, debris flows, and flash floods resulting in a massive amount of sediments being deposited in the river channels and alluvial fan, where most settlements are located. The overall damages and losses were approximately USD 1.3 billion, USD 92 million of which relates to the cost for removing sediments. The deposition height and extent were determined by calculating the difference in elevation using pre- and post-event Unmanned Aerial Vehicle (UAV) data and additional Light Detection and Raging (LiDAR) data. This provided deposition volumes of approximately 41 and 21 (103 m3) for the two study sites. For verification, the maximum flood level was simulated using trend interpolation of the flood margins and the Digital Terrain Model (DTM) was subtracted from it to obtain flooding depth, which indicates the maximum deposition height. The sediment deposition height was also measured in the field for a number of points for verification. The methods were applied in two sites and the results were compared. We investigated the strengths and weaknesses of direct sediment observations, and analyzed the uncertainty of sediment volume estimates by DTM/DSM differencing. The study concludes that the use of pre- and post-event UAV data in heavily vegetated tropical areas leads to a high level of uncertainty in the estimated volume of sediments.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 589
Author(s):  
Liqun Li ◽  
Xian Wang ◽  
Yichen Huang

During laser metal deposition (LMD) of thin-walled aluminum alloy structures, the deposition height and width is hard to keep stable because of the special properties of aluminum alloys, such as high reflectivity to laser beams, low viscosity, and high thermal conductivity. Monitoring the LMD process allows for a better comprehension and control of this process. To investigate the characteristics of the aluminum alloy LMD process, three real-time coaxial optical sensors sensitive to visible light, infrared light, and back-reflected lasers ere used to monitor the aluminum alloy LMD process. Thin-walled parts were deposited with different laser power, and the characteristics of the three in situ signals are analyzed. The results show that there exists high linear correlation between reflected laser and accumulated deposition height. A laser reflection model was built to explain the correlation. Besides, the infrared light is linearly correlated with deposition width. Overall, the results of this study show that the optical signals are able to reflect the deposition height and width simultaneously. Infrared light signals and reflected laser signals have the potential to serve as the input of online feedback geometry control systems and real-time defect alarm systems of the LMD process.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3531
Author(s):  
Manoochehr Shokrian Hajibehzad ◽  
Mahmood Shafai Bejestan ◽  
Vito Ferro

The enhanced permeable groin is a novel eco-friendly and cost-effective technique for bank protection and restoration of meander bends. The behavior of bed deformations due to the distance between the structures has to be studied to design enhanced permeable groins in series properly. In this study, scour morphologies around enhanced permeable groins in series, characterized by four different distances and located in a 180° mild flume bend, for clear water conditions were investigated. The analysis indicated that scour geometrical patterns such as the maximum scour depth nearby the structures and the maximum deposition height between them are strongly affected by the distance between the groins. The results revealed that the maximum scour depth around the structures increases with the distance between structures, the scour holes develop towards the outer bank and create a series of pools that can lead to the bank collapse. All experiments, carried out with different structure distances, demonstrated that the location of thalweg effectively shifted towards the middle of the channel and near the inner bank for high and low particle Froude numbers, respectively. As a general result, a distance between enhanced permeable groins equal to four times the effective length of the structure is recommended for a 180° mild flume bend for the investigated particle Froude numbers. Finally, a general design guideline is presented to a proper design of enhanced permeable groins in series.


2020 ◽  
Vol 8 (11) ◽  
pp. 872
Author(s):  
Yonggang Cui ◽  
Wei Haur Lam ◽  
Zhi Chao Ong ◽  
Lloyd Ling ◽  
Chee Loon Siow ◽  
...  

Experiments were conducted to investigate the seabed scour holes due to the interaction between the twin-propeller jet and quay wall. Vertical quay wall was modelled by using a polyvinyl chloride (PVC) plastic plate in a water tank. The relationship between the positions of the propeller and the vertical quay wall was designed according to the actual working conditions of a ship entering and leaving a port. Propeller-to-wall distance and rotational speed were changed to observe the various scour conditions. The scour depth was measured by using an Acoustic Doppler Velocimeter (ADV). Primary scour hole was found within the jet downstream and secondary scour hole occurred beneath of the propeller. Third scour hole was found close to the quay wall due to horseshoe vortices. The maximum scour position of this third scour hole was found at the jet centre near the quay wall. Temporal formation of scour holes can be divided into three stages: axial scour formation, obstructed scour expansion and equilibrium stages. The quantitative relationships for six characteristic parameters of the scour pit were established including the maximum scour depth (εmax,q), maximum scour depth position (Xm,q), maximum scour width (Wm,q), length of main scour pit (XS,q), maximum deposition height (ZD,q), and location of maximum deposition height (XD,q).


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 891
Author(s):  
Yuhui Zhao ◽  
Zhiguo Wang ◽  
Jibin Zhao ◽  
Zhenfeng He ◽  
Hongwei Zhang

The combination of additive manufacturing and conventional metal forming processes provides the possibility for improvements of forming efficiency and flexibility. Substrate preheating is an implementable technique to improve the interface adhesion properties of the hybrid forming method. The present experiment investigates the adhesion of additive manufactured 316 L steel on P20 and 1045 steel substrates under two substrate temperatures, and the geometrical characterization, interfacial microstructure and mechanical property of the hybrid specimens were compared. As a result, it was found that the ratio of deposition height to the width was reduced and the width was increased under substrate preheating. Tensile results show that the ultimate strength of 1045 and 316 L hybrid specimens was obviously increased, while the properties of hybrid specimens P20 and 316 L were similar, under different substrate temperature conditions. For the hybrid specimens with the metallurgically bonding characteristic, the tensile properties can reach the level of 316 L depositioned specimens fabricated by laser metal deposition (LMD). Furthermore, substrate preheating had little effect on the microstructure of the laser metal deposition zone, and significant influence on the microstructure of the heat affected zone, which was reflected in the difference of the hardness distribution.


Sign in / Sign up

Export Citation Format

Share Document