Effect of recast layer thickness on the mechanical characteristics of INCONEL 718 machined by spark EDM process

2018 ◽  
Vol 5 (2) ◽  
pp. 8249-8255
Author(s):  
M. Anthony Xavior ◽  
P. Ashwath ◽  
Harun Ali ◽  
Atef Moideen ◽  
Pansura Banu ◽  
...  
2014 ◽  
Vol 493 ◽  
pp. 529-534 ◽  
Author(s):  
Pathya Rupajati ◽  
Bobby Oedy Pramoedyo Soepangkat ◽  
Bambang Pramujati ◽  
H.C. Kis Agustin

In this study, the optimization of recast layer thickness and surface roughness (SR) simultaneously in a Wire-EDM process by using Taguchi method with fuzzy logic has been applied. The Wire-EDM process parameters (arc on time, on time, open voltage, off time and servo voltage) were optimized with considerations of multiple performance characteristics, i.e., recast layer thickness and SR. Based on the Taguchi method, an L18 mixed-orthogonal array table was chosen for the experiments. Fuzzy reasoning of the multiple performance characteristics has been developed based on fuzzy logic, which then converted into a fuzzy reasoning grade or FRG. As a result, the optimization of complicated multiple performance characteristics was transformed into the optimization of single response performance index. Experimental results have shown that machining performance characteristics of Wire-EDM process can be improved effectively through the combination of Taguchi method and fuzzy logic.


2021 ◽  
Author(s):  
Bibeka Nanda Padhi ◽  
Sounak Kumar Choudhury ◽  
Ramkumar Janakarajan

Abstract An electrical discharge forms a crater on the workpiece surface. The crater morphology estimates the performance parameters of the electrical discharge machining process. The energy parameters (gap voltage, discharge current and the pulse on time), the plasma channel radius and the energy fraction coming to the workpiece determine the molten cavity radius and depth. The plasma flushes away a portion of material from the molten cavity forming a crater and resolidification of the remaining molten material forms a recast layer. The plasma flushing efficiency determines the crater’s radius and depth. Few researchers have successfully expressed the plasma radius, energy fraction and plasma flushing efficiency in relation to two of the energy parameters, namely, discharge current and pulse on time but not as a gap voltage function. This work attempted to develop a thermo-physical model to express plasma radius, energy fraction and plasma flushing efficiency as a function of all three energy parameters, such as gap voltage, discharge current and pulse on time. Plasma flushing efficiency was calculated and plasma radius and energy fraction were estimated by inverse finite element method from the measured values of crater radius, crater depth and recast layer thickness. The expressions for plasma radius, energy fraction and plasma flushing efficiency were found out from the regression equations obtained from the designed data set using the Taguchi method. Validation shows that the modeled and experimental values of crater radius, crater depth, and recast layer thickness agree well.


2017 ◽  
Vol 6 (1) ◽  
pp. 82-88 ◽  
Author(s):  
Mallaiah Manjaiah ◽  
Rudolph F. Laubscher

Author(s):  
M Sreenivasa Rao ◽  
N Venkaiah

Nickel-based alloys are finding a wide range of applications due to their superior properties of maintaining hardness at elevated temperatures, low thermal conductivity and resistance to corrosion. These materials are used in aircraft, power-generation turbines, rocket engines, automobiles, nuclear power and chemical processing plants. Machining of such alloys is difficult using conventional processes. Wire-cut electrical discharge machining is one of the advanced machining processes, which can cut any electrically conductive material irrespective of its hardness. One of the major disadvantages of this process is formation of recast layer as it affects the properties of the machined surfaces. In this study, experimental investigation has been carried out to study the effect of wire-cut electrical discharge machining process parameters on micro-hardness, surface roughness and recast layer while machining Inconel-690 material. Interestingly, hardness of the machined surface was found to be lower than that of the bulk material. The micro-hardness and recast layer thickness are inversely related to the variation of process parameters. Recast layer thickness, surface roughness and hardness of the wire-cut electrical discharge machined surfaces of Inconel-690 are found to be in the range of 10–50 µm, 0.276–3.253 µm and 122–171 HV, respectively, for different conditions. The research findings and the data generated for the first time on hardness and recast layer thickness for Inconel-690 will be useful to the industry.


Sign in / Sign up

Export Citation Format

Share Document