Pipe Blockage Prediction of Shell and Tube Heat Exchanger under Linear and Cross Flow Operation

2019 ◽  
Vol 13 ◽  
pp. 132-136
Author(s):  
Wiji Mangestiyono ◽  
Sutrisno ◽  
Sutrisno ◽  
Juli Mrihardjono
2011 ◽  
Vol 236-238 ◽  
pp. 1607-1613 ◽  
Author(s):  
Xin Gu ◽  
Yong Qing Wang ◽  
Qi Wu Dong ◽  
Min Shan Liu

A new concept of “Sideling Flow” in shell side of shell-and-tube heat exchanger is presented, which is relative to the cross flow, longitudinal flow and helical flow in heat exchanger. A type of new energy saving shell-and-tube heat exchanger with sideling flow in shell side, shutter baffle heat exchanger is invented, which exhibits the significant heat transfer enhancement and flow resistance reducement performance. The “Field Synergy Principle” is adopted to analyze the heat transfer enhancement mechanism of sideling flow, it is indicated that the shutter baffle heat exchanger exhibits the perfect cooperativity between velocity field and temperature grads field. Effects of the structure and processing parameters on the fluid flow and heat transfer are also investigated through numerical simulation, both the correlative equations of heat transfer coefficient and pressure drop in shell side are deduced, which provide references for the design and popularization of this new type heat exchanger.


Author(s):  
Leonardo Cavalheiro Martinez ◽  
Leonardo Cavalheiro Martinez ◽  
Viviana Mariani ◽  
Marcos Batistella Lopes

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


Sign in / Sign up

Export Citation Format

Share Document