Thermal conductivity and dynamic viscosity of aqueous-silver nanoparticle dispersion

Author(s):  
J. Sunil ◽  
M. Dhayanithi Pooja ◽  
R. Ginil ◽  
S.N. Alex ◽  
A. Ajith Pravin
2002 ◽  
Author(s):  
B.V. Savinykh ◽  
I. R. Sagbiev ◽  
A. A. Mukhamadiev ◽  
F. M. Gumerov ◽  
B. Le Niendre

Author(s):  
Anwar Ilmar RAMADHAN ◽  
Wan Hamzah AZMI ◽  
Rizalman MAMAT

In recent years, research has focused on enhancing the thermo-physical properties of a single component nanofluid. Therefore, hybrid or composite nanofluids have been developed to improve heat transfer performance. The thermo-physical properties of the Al2O3-TiO2-SiO2 nanoparticles suspended in a base of water (W) and ethylene glycol (EG) at constant volume ratio of 60:40 and different volume concentrations were investigated. The experiment was conducted for the volume concentrations of 0.05, 0.1, 0.2, and 0.3% of Al2O3-TiO2-SiO2 nanofluids at different temperatures of 30, 40, 50, 60, and 70 °C. Thermal conductivity and dynamic viscosity measurements were carried out at temperatures ranging from 30 to 70 °C by using KD2 Pro Thermal Properties Analyzer and Brookfield LVDV III Ultra Rheometer, respectively. The highest thermal conductivity for tri-hybrid nanofluids was obtained at 0.3% volume concentration, and the maximum enhancement was increased up to 9% higher than the base fluid (EG/W). Tri-hybrid nanofluids with a volume concentration of 0.05% gave the lowest effective thermal conductivity of 4.8 % at 70 °C temperature. Meanwhile, the dynamic viscosity of the tri-hybrid nanofluids was influenced by volume concentration and temperature. Furthermore, tri-hybrid nanofluids behaved as a Newtonian fluid for volume concentrations from 0.05 to 3.0%. The properties enhancement ratio (PER) estimated that the tri-hybrid nanofluids will aid in heat transfer for all samples in the present. The new correlations for thermal conductivity and dynamic viscosity of tri-hybrid nanofluids were developed with minimum deviation. As a conclusion, the combination of the enhancement in thermal conductivity and dynamic viscosity for tri-hybrid at 0.3% volume concentration was found the optimum condition with more advantage for heat transfer than other concentrations.


2018 ◽  
Vol 74 (6) ◽  
pp. 1301-1322 ◽  
Author(s):  
Mohammad Hossein Ahmadi ◽  
Afshin Tatar ◽  
Parinaz Seifaddini ◽  
Mahyar Ghazvini ◽  
Roghayeh Ghasempour ◽  
...  

2018 ◽  
Vol 27 (6) ◽  
pp. 096369351802700
Author(s):  
Tao Huang ◽  
Yimin Yao ◽  
Gang Zhang ◽  
Fanling Meng

With the development of polymer-filled composites, the demand of high thermal conductivity materials is much attractive than ever. However, the process of a common method to improve thermal conductivity of composites is considerably complicated. The aim of this study is to investigate thermal conductivity of epoxy filled silver nanoparticle deposited aluminum nitride nanoparticles with relatively convenient process. We found that the thermal conductivities of composites filled with AlN/Ag nanoparticles are effectively enhanced, which is enormously increased from 0.48 Wm-1K-1(1.88 vol%) to 3.66 Wm-1K-1 (19.54 vol%). This can be ascribed to the bridging connections of silver nanoparticle among aluminum nitride nanoparticles. In addition, the thermal contact resistance of the epoxy composites filler with AlN/Ag nanoparticles is decreased, which is proved by the fitting measured thermal conductivity of epoxy composite with one physical model. We believe the finding has great potential for any microelectronic application.


Sign in / Sign up

Export Citation Format

Share Document