Hardfacing of X2CrNiMoN22-5-3 Duplex stainless steel with Stellite alloy using pulsed TIG welding process

Author(s):  
Daniel Mutaşcu ◽  
Ion Mitelea ◽  
Ilare Bordeaşu ◽  
Mircea Burcă ◽  
Ion-Dragoş Uţu
Author(s):  
Sandip Mondal ◽  
Goutam Nandi ◽  
Pradip Kumar Pal

Tungsten inert gas (TIG) welding on Duplex stainless steel (DSS) is more easy, comfortable and useful, if the process is precisely understood and controlled through development of the science & technology. TIG welding on DSS has been performed with the help of specific controlled welding process parameters. Welding quality has been strongly depended on these process parameters. In this study, some valuable welding parameters are chosen. These are welding current, shielding gas flow rate and speed of welding. These process parameters of TIG welding for ASTM/UNS 2205 DSS welds are optimized by using Principal Component Analysis (PCA) method and Grey based Taguchi’s L9 Orthogonal array (OA) experimental plan with the conception of signal to noise ratio (N/S). After that, compression results of above mentioned two analyses of TIG welding process parameters have been calculated. The quality of the TIG welding on DSS has been evaluated in term of ultimate tensile strength, yield strength and percentage of elongation. Compression results of both analyses indicate application feasibility for continuous improvement of welding quality on DSS in different components of chemical, oil and gas industries.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1323
Author(s):  
Shuwan Cui ◽  
Shuwen Pang ◽  
Dangqing Pang ◽  
Qin Zhang ◽  
Zhiqing Zhang

In this paper, 8 mm thickness 2205 duplex stainless steel (DSS) plates were successfully welded using keyhole tungsten inert gas welding (K-TIG) welding, and numerical simulations were performed applying the finite element method. Three models of combined heat source were adopted to verify accuracy of experiment. The welding process under different welding speeds were simulated, and the temperature field, molten pool shape, and thermal cycle curve were calculated. The welding simulation results show that a combined model consisting of the ellipsoid heat source and the conical heat source is more suitable for K-TIG welding. The results of the microstructure analysis of the welded joint showed that when the welding speed was increased from 280 mm/min to 340 mm/min, the austenite content and the ferrite and austenite grain size decreased. The evolution laws of welded joint morphologies, microstructure and grain sizes under different welding speed conditions were consistent with the analysis results of simulated molten pool morphologies, temperature field distributions and thermal cycle curves. It is proved that this kind of simulation method can effectively simulate the K-TIG welding process and ensure the welding quality, which is a guide for industrial applications.


Author(s):  
Daniel Mutaşcu ◽  
Ion Mitelea ◽  
Ilare Bordeaşu ◽  
Dragoş Buzdugan ◽  
Florin Franţ

Author(s):  
C. Sasikumar ◽  
R. Sundaresan ◽  
C. Merlin Medona ◽  
A. Ramakrishnan

2016 ◽  
Vol 23 (03) ◽  
pp. 1650013 ◽  
Author(s):  
MOHAMMED ASIF M. ◽  
KULKARNI ANUP SHRIKRISHNA ◽  
P. SATHIYA

The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080[Formula: see text]C, 1150[Formula: see text]C and 1200[Formula: see text]C with 15[Formula: see text]min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080[Formula: see text]C followed by water quench and at 1150[Formula: see text]C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov–Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100[Formula: see text]C and that for oil quenching was around 1140[Formula: see text]C. The pit depths were found to be in the range of 100[Formula: see text]nm and width of 1.5–2[Formula: see text][Formula: see text]m.


2017 ◽  
Vol 904 ◽  
pp. 19-23
Author(s):  
Van Nhat Nguyen ◽  
Quoc Manh Nguyen ◽  
Dang Thi Huong Thao ◽  
Shyh Chour Huang

Welding dissimilar materials has been widely applied in industries. Some of them are considered this as a strategy to develop their future technology products. Aluminum alloy and stainless steel have differences in physical, thermal, mechanical and metallurgic properties. However, selecting a suitable welding process and welding rods can solve this problem. This research aimed to investigate the T-joint welding between A6061 aluminum alloy and SUS304 stainless steel using new welding rods, Aluma-Steel by the Tungsten Inert Gas (TIG) welding process. The mechanical properties, the characteristics of microstructure, and component analysis of the welds have been investigated by the mechanical testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). As a result, the fracture occurred at the adjacent area between welding seam and A6061 alloys plate. The thermal cracking appeared at central welding-seam along the base metals if high welding current. A large amount of copper elements found in the welds due to using the new welding rod, Aluma-Steel rod.


Sign in / Sign up

Export Citation Format

Share Document