Experimental study on vibration control using shape memory alloy based vibration absorber

Author(s):  
Pravin Uttam Mane ◽  
Gangadhar Ramrao Kondekar
2021 ◽  
Vol 21 (1) ◽  
pp. 15-25
Author(s):  
Rusul Saad Ahmed ◽  
Qasim Abaas Atiyah ◽  
Imad Abdlhussein Abdulsahib

Smart materials have a growing technological importance due to their unique thermomechanical characteristics. Shape memory alloys belong to this class of materials being easy to manufacture, relatively lightweight, and able to produce high forces or displacements with low power consumption. These aspects could be exploited in different applications including vibration control. A dynamic vibration absorber (DVA) can be used as an effective vibration control device. It is essentially a secondary mass, attached to an original system via a spring and damper. The natural frequency of the DVA is tuned such that it coincides with the frequency of unwanted vibration in the original system. This work aims to develop a dynamic vibration absorber with the help of shape memory alloy (SMA) springs in order to attenuate the vibration for a range of excitation frequencies. The experimental apparatus consisted of low-friction cars free to move in a rail. A shaker that provides harmonic forcing excites the system. Special attention is dedicated to the analysis of vibration reduction that can be achieved by considering different approaches exploiting temperature variations promoted either by electric current changes or by vibration absorber techniques. The results established that adaptability due to temperature variations is defined by modulus of stiffness


1994 ◽  
Vol 107 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Chuanrui Yang ◽  
Yanqing Sun ◽  
Peiqing Dong ◽  
Huazhong Wang

2020 ◽  
Vol 28 ◽  
pp. 2110-2117
Author(s):  
Fedor S. Belyaev ◽  
Margarita E. Evard ◽  
Eugeny S. Ostropiko ◽  
Aleksandr E. Volkov

1993 ◽  
Vol 115 (1) ◽  
pp. 129-135 ◽  
Author(s):  
C. Liang ◽  
C. A. Rogers

Shape memory alloys (SMAs) have several unique characteristics, including their Young’s modulus-temperature relations, shape memory effects, and damping characteristics. The Young’s modulus of the high-temperature austenite of SMAs is about three to four times as large as that of low-temperature martensite. Therefore, a spring made of shape memory alloy can change its spring constant by a factor of three to four. Since a shape memory alloy spring can vary its spring constant, provide recovery stress (shape memory effect), or be designed with a high damping capacity, it may be useful in adaptive vibration control. Some vibration control concepts utilizing the unique characteristics of SMAs will be presented in this paper. Shape memory alloy springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some design approaches based upon linear theory have been proposed for shape memory alloy springs. A more accurate design method for SMA springs based on a new nonlinear thermomechanical constitutive relation of SMA is also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document