Analytical study of irregular reinforced concrete building with shear wall and dual Framed-Shear wall system by using Equivalent Static and Response Spectrum Method

2021 ◽  
Vol 43 ◽  
pp. 2232-2241
Author(s):  
Wesam Al Agha ◽  
Nambiappan Umamaheswari
2019 ◽  
Vol 8 (4) ◽  
pp. 3633-3637

Precast concrete structures are widely used in construction. It consists of prefabricated elements casted in industry and connected to each other to form a homogeneous structure. Connections function is to transfer moments and axial forces. Many engineers assume precast connection as pinned, but in reality, they are semi-rigid connections that transfer forces to other members. Lack of design and detailing of connection leads to improper behaviour of the structure, which then leads to the collapse of the building. Past earthquake studies show that many precast buildings performed poorly, and the main reasons were connections. This paper mainly focuses on understanding the seismic behaviour of mid-rise i.e seven-storey precast reinforced concrete buildings with various beam-column joints i.e rigid, semi-rigid, pinned and column-base supports i.e, fixed and hinged supports. Building is modelled and analyzed using ETABS v17 software. Rotational stiffness of precast billet connection is adopted for modelling of semi-rigid beam-column connections. Response spectrum and modal analysis are carried out. Results of displacements, storey drift, storey shear, storey stiffness, base shear, time periods and first mode shapes of models are discussed. It is observed, precast reinforced concrete building models with semi rigid connection performs better than building models with pinned connections and building models with fixed supports reduces the structural response to a great extent.


2011 ◽  
Vol 368-373 ◽  
pp. 285-288
Author(s):  
Shu Yun Zhang ◽  
Guo Liang Bai ◽  
Zhi Gang Gao

For seismic design of composite frame and reinforced concrete core hybrid structures in high-rise buildings, the response spectrum method is influenced to a large extent by mode combination rules and number of combined modes. The dynamic characteristics of composite frame and concrete core hybrid structures were studied through modal analysis, natural vibration periods and mode shape of hybrid structures had calculated and analyzed, the results show that the natural vibration frequencies are near, the complete quadratic combination of mode combination rule was recommended for avoiding higher order mode shape lose in the response spectrum method. The reasonable number of combined modes for response spectrum method were studied by truncation error analysis, it is proposed that more than 20 modes are combined. The results of the time history analysis und The three dimensional finite element er three earthquake waves were compared with results of response spectrum, indicating that the maximum response of hybrid structures can be obtained under reasonable mode number.


2021 ◽  
pp. 107754632110075
Author(s):  
Junling Chen ◽  
Jinwei Li ◽  
Dawei Wang ◽  
Youquan Feng

The steel–concrete hybrid wind turbine tower is characterized by the concrete tubular segment at the lower part and the traditional steel tubular segment at the upper part. Because of the great change of mass and stiffness along the height of the tower at the connection of steel segment and concrete segment, its dynamic responses under seismic ground motions are significantly different from those of the traditional steel tubular wind turbine tower. Two detailed finite element models of a full steel tubular tower and a steel–concrete hybrid tower for 2.0 MW wind turbine built in the same wind farm are, respectively, developed by using the finite element software ABAQUS. The response spectrum method is applied to analyze the seismic action effects of these two towers under three different ground types. Three groups of ground motions corresponding to three ground types are used to analyze the dynamic response of the steel–concrete hybrid tower by the nonlinear time history method. The numerical results show that the seismic action effect by the response spectrum method is lower than those by the nonlinear time history method. And then it can be concluded that the response spectrum method is not suitable for calculating the seismic action effects of the steel–concrete hybrid tower directly and the time history analyses should be a necessary supplement for its seismic design. The first three modes have obvious contributions on the dynamic response of the steel–concrete hybrid tower.


2017 ◽  
Author(s):  
Chee Ghuan Tan ◽  
Wei Ting Chia ◽  
Taksiah A. Majid ◽  
Fadzli Mohamed Nazri ◽  
Mohd Irwan Adiyanto

Sign in / Sign up

Export Citation Format

Share Document