Comparative study and analysis between Solid Oxide Fuel Cells (SOFC) and Proton Exchange Membrane (PEM) fuel cell – A review

Author(s):  
Vansh Malik ◽  
Siddharth Srivastava ◽  
Mudit K. Bhatnagar ◽  
Mohit Vishnoi
2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


Author(s):  
Olexander Agarkov ◽  
Kostyantyn Shevchuk ◽  
Yurii Ivanyna

In previous articles on this topic [1-3] we examined the perspectives of application of power plants based on solid oxide fuel cells (SOFCs) as auxiliary power plants as well as range extenders for heavy freight transport [1,2] and cars [3]: we considered experience of USA [1], Europe [2] and Japan [3]. We showed, that such kind of systems give opportunity to obtain electrical power from chemical energy of hydrocarbon fuel oxidation with record-high efficiency (much higher than competitive solutions) in order to supply on-board vehicle systems during stops of main engine, as well as to significantly extend the range of electrical vehicles by means of constant charge of batteries directly during motional and their discharge due to operation of electrical engine. In current manuscript, we examine the world first experience of SOFC power plant application as range extender for electrical buses. Group of Ceres Power (UK) and Weichai Power (China) companies executed a corresponding project. As a result of project execution system prototype with power output of 30 kW was developed and manufactured, tests on bus lines are planned to be executed in nearest future. The system examined in current manuscript is the most powerful in comparison to other systems studied in this set of manuscripts: 30 kW against 1.5 and 9 kW [1], 3 kW [2] as well as 5 kW [3] for systems examined in previous works. Examined system uses compressed natural gas (CNG) as a fuel; this hydrocarbon is very convenient one due to well-developed distribution network, ecological cleanness in comparison with more complex and heavy hydrocarbon mixtures. Application of low-temperature fuel cells (with proton-exchange membrane), which are more simple in manufacture, in automobile transport leads to the demand in development of hydrogen supply networks, which is not developed nowadays at all.


Author(s):  
Jianlu Zhang ◽  
Chaojie Song ◽  
Jiujun Zhang

In this paper, two testing protocols were developed in order to accelerate the lifetime testing of proton exchange membrane (PEM) fuel cells. The first protocol was to operate the fuel cell at extremely high temperatures, such as 300 °C, and the second was to operate the fuel cell at unusually high current densities, such as 2.0 A/cm2. A PEM fuel cell assembled with a PBI membrane-based MEA was designed and constructed to validate the first testing protocol. After several hours of high temperature operation, the degraded MEA and catalyst layers were analyzed using SEM, XRD, and TEM. A fuel cell assembled with a Nafion 211 membrane-based MEA was employed to validate the second protocol. The results obtained at high temperature and at high load demonstrated that operating a PEM fuel cell under certain extremely high-stress conditions could be used as methods for accelerated lifetime testing.


2021 ◽  
Vol 11 (5) ◽  
pp. 2052
Author(s):  
Amlak Abaza ◽  
Ragab A. El-Sehiemy ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

In recent years, the penetration of fuel cells in distribution systems is significantly increased worldwide. The fuel cell is considered an electrochemical energy conversion component. It has the ability to convert chemical to electrical energies as well as heat. The proton exchange membrane (PEM) fuel cell uses hydrogen and oxygen as fuel. It is a low-temperature type that uses a noble metal catalyst, such as platinum, at reaction sites. The optimal modeling of PEM fuel cells improves the cell performance in different applications of the smart microgrid. Extracting the optimal parameters of the model can be achieved using an efficient optimization technique. In this line, this paper proposes a novel swarm-based algorithm called coyote optimization algorithm (COA) for finding the optimal parameter of PEM fuel cell as well as PEM stack. The sum of square deviation between measured voltages and the optimal estimated voltages obtained from the COA algorithm is minimized. Two practical PEM fuel cells including 250 W stack and Ned Stack PS6 are modeled to validate the capability of the proposed algorithm under different operating conditions. The effectiveness of the proposed COA is demonstrated through the comparison with four optimizers considering the same conditions. The final estimated results and statistical analysis show a significant accuracy of the proposed method. These results emphasize the ability of COA to estimate the parameters of the PEM fuel cell model more precisely.


2019 ◽  
Vol 10 (1) ◽  
pp. 4853-4863

Hydrogen is an important energy carrier and a strong candidate for energy storage. It will be a useful tool for storing intermittent energy sources such as sun. Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. By this work, modeling and controlling of ion transport rate efficiency in proton exchange membrane (PEMFC), alkaline (AFC), direct methanol (DMFC), phosphoric acid (PAFC), direct forming acid (DFAFC), direct carbon fuel cell (DCFC) and molten carbonate fuel cells (MCFC) have been investigated and compared together. Thermodynamic equations have been investigated for those fuel cells in viewpoint of voltage output data. Effects of operating data including temperature (T), pressure (P), proton exchange membrane water content (λ), and proton exchange membrane thickness (d_mem) on the optimal performance of the irreversible fuel cells have been studied. Performance of fuel cells was analyzed via simulating polarization and power curves for a fuel cell operating at various conditions with current densities. SOFC (Solid oxide fuel cell) is usually combined with a dense electrolyte sandwiched via porous cathode and anode and SORFC (Solid oxide regenerative fuel cell) is a subgroup of RFC with solid oxide regenerative fuel cell. SORFC operates at high temperature with high efficiency and it is a suitable system for high temperature electrolysis.


Sign in / Sign up

Export Citation Format

Share Document