Design and study of system on chip design for signal processing applications in terms of energy and area

Author(s):  
K.M. Monica
2014 ◽  
Vol 668-669 ◽  
pp. 857-861
Author(s):  
Peng Fei Hu ◽  
Yu Xiang Yuan ◽  
Zhi Juan Qu ◽  
Xue Ping Jiang

To improve the reliability and integration of relay protection devices in power, the system on chip design for multi-principle of relay protection on FPGA is proposed. The data acquisition, digital signal processing, hardware protection algorithm, FPGA and MCU process scheduling, MCU and peripheral devices communication are designed, the hardware compilation model is set up by QuartusII on FPGA, and the simulation and experimental verification are performed. The results show that the proposed system can improve the speed of hardware protection and reduce the volume of the device, and has reconstruction on architecture.


Author(s):  
S.F. R. Faezal ◽  
M. N. Isa ◽  
S. Taking ◽  
S. N. Mohyar ◽  
A. B. Jambek ◽  
...  

<span>Dramatic rises in power density and die sizes inside system-on-chip (SoC) design have led to the thermal issue. High temperatures or uneven temperature distributions may result not only in reliability issues, also has become the biggest issue that can limit the system performance.  This paper presents the design and simulation of a temperature-based digital signal processing unit for modern system-on-chip design using the Verilog HDL. This design provides continuous monitoring of temperature and reacts to specified conditions. The simulation of the system has been done on Synopsys Software. The result showed that temperature monitoring process is within the temperature range due to the incorporation of an interrupt-based system and with an advantage of minimum chip area required.</span>


2017 ◽  
Vol 14 (24) ◽  
pp. 20171089-20171089 ◽  
Author(s):  
Song Ma ◽  
Liubin Li ◽  
Guan Wang ◽  
Yuhua Cheng

Sign in / Sign up

Export Citation Format

Share Document