System on Chip Design for Multi-Principle of Relay Protection in the FPGA

2014 ◽  
Vol 668-669 ◽  
pp. 857-861
Author(s):  
Peng Fei Hu ◽  
Yu Xiang Yuan ◽  
Zhi Juan Qu ◽  
Xue Ping Jiang

To improve the reliability and integration of relay protection devices in power, the system on chip design for multi-principle of relay protection on FPGA is proposed. The data acquisition, digital signal processing, hardware protection algorithm, FPGA and MCU process scheduling, MCU and peripheral devices communication are designed, the hardware compilation model is set up by QuartusII on FPGA, and the simulation and experimental verification are performed. The results show that the proposed system can improve the speed of hardware protection and reduce the volume of the device, and has reconstruction on architecture.

Author(s):  
S.F. R. Faezal ◽  
M. N. Isa ◽  
S. Taking ◽  
S. N. Mohyar ◽  
A. B. Jambek ◽  
...  

<span>Dramatic rises in power density and die sizes inside system-on-chip (SoC) design have led to the thermal issue. High temperatures or uneven temperature distributions may result not only in reliability issues, also has become the biggest issue that can limit the system performance.  This paper presents the design and simulation of a temperature-based digital signal processing unit for modern system-on-chip design using the Verilog HDL. This design provides continuous monitoring of temperature and reacts to specified conditions. The simulation of the system has been done on Synopsys Software. The result showed that temperature monitoring process is within the temperature range due to the incorporation of an interrupt-based system and with an advantage of minimum chip area required.</span>


Author(s):  
Yu. V. Rumiantsev ◽  
F. A. Romaniuk

Recently, there has been an increased interest in the use of artificial neural networks in various branches of the electric power industry including relay protection. Аrtificial neural networks are one of the fastest growing areas in artificial intelligence technology. Recently, there has been an increased interest in the use of аrtificial neural networks in the electric power engineering, including relay protection. Existing microprocessor-based relay protection devices use a traditional digital signal processing of the monitored signals which is reduced to a multiplying the values of successive samples of the monitored current and voltage signals by predetermined coefficients in order to calculate their RMS values. In this case, the calculated RMS values often do not reflect the real processes occurring in the protected electrical equipment due to, for example, current transformer saturation because of the DC component presence in the fault current. When the current transformer is saturated, its secondary current waveform has a characteristic non-periodic distorted form, which is significantly differs from its primary (true) waveform, which causes underestimation of the calculated RMS value of the secondary current compared to its true value. In its turn, this causes to a trip time delay or even to a relay protection devices operation failure. The use of аrtificial neural networks in conjunction with a traditional digital signal processing provides a different approach to the functioning of both the measuring and logical parts of the microprocessor-based relay protection devices, which significantly increases the speed and reliability of such relay protection devices in comparison with their traditional implementation. A possible application of the аrtificial neural networks for the relay protection purposes is the fault occurrence detection and its type identification, current transformer secondary current waveform distortion restoration due to its saturation up to its true value, detection the distorted and undistorted sections of the current transformer secondary current waveform during its saturation, primary power equipment abnormal operating modes detection, for example, power transformer magnetizing current inrush. The article describes in detail the stages of the practical implementation of the аrtificial neural networks in the MATLAB-Simulink environment by the example of its use to restore the distorted current transformer secondary current waveform due to saturation.


2014 ◽  
pp. 155-193
Author(s):  
Swarup Bhunia ◽  
Abhishek Basak ◽  
Seetharam Narasimhan ◽  
Maryam Sadat Hashemian

Sign in / Sign up

Export Citation Format

Share Document