scholarly journals Topological sensitivity analysis for the modified Helmholtz equation under an impedance condition on the boundary of a hole

2015 ◽  
Vol 103 (2) ◽  
pp. 557-574 ◽  
Author(s):  
Mohamed Jleli ◽  
Bessem Samet ◽  
Grégory Vial
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jinghuai Gao ◽  
Dehua Wang ◽  
Jigen Peng

An inverse source problem in the modified Helmholtz equation is considered. We give a Tikhonov-type regularization method and set up a theoretical frame to analyze the convergence of such method. A priori and a posteriori choice rules to find the regularization parameter are given. Numerical tests are presented to illustrate the effectiveness and stability of our proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Nilson C. Roberty ◽  
Denis M. de Sousa ◽  
Marcelo L. S. Rainha

We consider the problem of reconstruction of an unknown characteristic interval and block transient thermal source inside a domain. By exploring the definition of an Extended Dirichlet to Neumann map in the time space cylinder that has been introduced in Roberty and Rainha (2010a), we can treat the problem with methods similar to that used in the analysis of the stationary source reconstruction problem. Further, the finite differenceθ-scheme applied to the transient heat conduction equation leads to a model based on a sequence of modified Helmholtz equation solutions. For each modified Helmholtz equation the characteristic interval and parallelepiped source function may be reconstructed uniquely from the Cauchy boundary data. Using representation formula we establish reciprocity functional mapping functions that are solutions of the modified Helmholtz equation to their integral in the unknown characteristic support. Numerical experiment for capture of an interval and an rectangular parallelepiped characteristic source inside a cubic box domain from boundary data are presented in threedimensional and one-dimensional implementations. The problem of centroid determination is addressed and questions are discussed from an computational points of view.


Author(s):  
J. R. Faria ◽  
R. A. Feijoó ◽  
A. A. Novotny ◽  
E. Taroco ◽  
C. Padra

2020 ◽  
Vol 46 (5) ◽  
Author(s):  
Fredrik Fryklund ◽  
Mary Catherine A. Kropinski ◽  
Anna-Karin Tornberg

Abstract Integral equation–based numerical methods are directly applicable to homogeneous elliptic PDEs and offer the ability to solve these with high accuracy and speed on complex domains. In this paper, such a method is extended to the heat equation with inhomogeneous source terms. First, the heat equation is discretised in time, then in each time step we solve a sequence of so-called modified Helmholtz equations with a parameter depending on the time step size. The modified Helmholtz equation is then split into two: a homogeneous part solved with a boundary integral method and a particular part, where the solution is obtained by evaluating a volume potential over the inhomogeneous source term over a simple domain. In this work, we introduce two components which are critical for the success of this approach: a method to efficiently compute a high-regularity extension of a function outside the domain where it is defined, and a special quadrature method to accurately evaluate singular and nearly singular integrals in the integral formulation of the modified Helmholtz equation for all time step sizes.


Sign in / Sign up

Export Citation Format

Share Document