scholarly journals Machine learning bridges local static structure with multiple properties in metallic glasses

2020 ◽  
Vol 40 ◽  
pp. 48-62
Author(s):  
Zhao Fan ◽  
Jun Ding ◽  
Evan Ma
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Qi Wang ◽  
Jun Ding ◽  
Longfei Zhang ◽  
Evgeny Podryabinkin ◽  
Alexander Shapeev ◽  
...  

AbstractThe elementary excitations in metallic glasses (MGs), i.e., β processes that involve hopping between nearby sub-basins, underlie many unusual properties of the amorphous alloys. A high-efficacy prediction of the propensity for those activated processes from solely the atomic positions, however, has remained a daunting challenge. Recently, employing well-designed site environment descriptors and machine learning (ML), notable progress has been made in predicting the propensity for stress-activated β processes (i.e., shear transformations) from the static structure. However, the complex tensorial stress field and direction-dependent activation could induce non-trivial noises in the data, limiting the accuracy of the structure-property mapping learned. Here, we focus on the thermally activated elementary excitations and generate high-quality data in several Cu-Zr MGs, allowing quantitative mapping of the potential energy landscape. After fingerprinting the atomic environment with short- and medium-range interstice distribution, ML can identify the atoms with strong resistance or high compliance to thermal activation, at a high accuracy over ML models for stress-driven activation events. Interestingly, a quantitative “between-task” transferring test reveals that our learnt model can also generalize to predict the propensity of shear transformation. Our dataset is potentially useful for benchmarking future ML models on structure-property relationships in MGs.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Akihiko Hirata ◽  
Tomohide Wada ◽  
Ippei Obayashi ◽  
Yasuaki Hiraoka

AbstractThe structural origin of the slow dynamics in glass formation remains to be understood owing to the subtle structural differences between the liquid and glass states. Even from simulations, where the positions of all atoms are deterministic, it is difficult to extract significant structural components for glass formation. In this study, we have extracted significant local atomic structures from a large number of metallic glass models with different cooling rates by utilising a computational persistent homology method combined with linear machine learning techniques. A drastic change in the extended range atomic structure consisting of 3–9 prism-type atomic clusters, rather than a change in individual atomic clusters, was found during the glass formation. The present method would be helpful towards understanding the hierarchical features of the unique static structure of the glass states.


2021 ◽  
Vol 197 ◽  
pp. 110656
Author(s):  
Zhuang Li ◽  
Zhilin Long ◽  
Shan Lei ◽  
Ting Zhang ◽  
Xiaowei Liu ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qi Wang ◽  
Anubhav Jain

AbstractWhen metallic glasses (MGs) are subjected to mechanical loads, the plastic response of atoms is non-uniform. However, the extent and manner in which atomic environment signatures present in the undeformed structure determine this plastic heterogeneity remain elusive. Here, we demonstrate that novel site environment features that characterize interstice distributions around atoms combined with machine learning (ML) can reliably identify plastic sites in several Cu-Zr compositions. Using only quenched structural information as input, the ML-based plastic probability estimates (“quench-in softness” metric) can identify plastic sites that could activate at high strains, losing predictive power only upon the formation of shear bands. Moreover, we reveal that a quench-in softness model trained on a single composition and quench rate substantially improves upon previous models in generalizing to different compositions and completely different MG systems (Ni62Nb38, Al90Sm10 and Fe80P20). Our work presents a general, data-centric framework that could potentially be used to address the structural origin of any site-specific property in MGs.


Sign in / Sign up

Export Citation Format

Share Document