Polystyrene supported Zinc complex as an efficient catalyst for cyclic carbonate formation via CO2 fixation under atmospheric pressure and organic carbamates production

2018 ◽  
Vol 452 ◽  
pp. 129-137 ◽  
Author(s):  
Surajit Biswas ◽  
Resmin Khatun ◽  
Manideepa Sengupta ◽  
Sk. Manirul Islam
Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Ángela Mesías-Salazar ◽  
Yersica Rios Yepes ◽  
Javier Martínez ◽  
René S. Rojas

A set of tetranuclear alkyl aluminum adducts 1 and 2 supported by benzodiimidazole-diylidene ligands L1, N,N’-(1,5-diisopropylbenzodiimidazole-2,6-diylidene)bis(propan-2-amine), and L2, N,N’-(1,5-dicyclohexyl-benzodiimidazole-2,6-diylidene)dicyclohexanamine were synthetized in exceptional yields and characterized by spectroscopic methods. These compounds were studied as catalysts for cyclic carbonate formation (3a–o) from their corresponding terminal epoxides (2a–o) and carbon dioxide utilizing tetrabutylammonium iodide as a nucleophile in the absence of a solvent. The experiments were carried out at 70 °C and 1 bar CO2 pressure for 24 h and adduct 1 was the most efficient catalyst for the synthesis of a large variety of monosubstituted cyclic carbonates with excellent conversions and yields.


2021 ◽  
Vol 511 ◽  
pp. 111756
Author(s):  
Cheng Li ◽  
Fei Liu ◽  
Tianxiang Zhao ◽  
Jiarui Gu ◽  
Peng Chen ◽  
...  

2019 ◽  
Vol 3 (4) ◽  
pp. 935-941 ◽  
Author(s):  
Tanmoy Biswas ◽  
Venkataramanan Mahalingam

An ionic liquid-triazine and KI combination was found to be an efficient catalyst for epoxide to cyclic carbonate conversion under CO2 filled balloon conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (37) ◽  
pp. 31153-31160 ◽  
Author(s):  
Susmita Roy ◽  
Biplab Banerjee ◽  
Asim Bhaumik ◽  
Sk. Manirul Islam

Self-assembled, ultra small, porous zinc stannate nanocrystals have been synthesized, which catalyzes the formation of cyclic carbonates from various epoxide and CO2 under very mild reaction conditions.


2020 ◽  
Vol 356 ◽  
pp. 527-534
Author(s):  
Doyun Kim ◽  
Saravanan Subramanian ◽  
Damien Thirion ◽  
Youngdong Song ◽  
Aqil Jamal ◽  
...  

2021 ◽  
Vol 149 ◽  
pp. 110397
Author(s):  
Tianfo Guo ◽  
Yongqiang Li ◽  
Zhenjiang Li ◽  
Haoying Tong ◽  
Luoyu Gao ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4097
Author(s):  
Wooyong Seong ◽  
Hyungwoo Hahm ◽  
Seyong Kim ◽  
Jongwoo Park ◽  
Khalil A. Abboud ◽  
...  

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.


2021 ◽  
Vol 1016 ◽  
pp. 1417-1422
Author(s):  
Chao Sun ◽  
Jugoslav Krstic ◽  
Vojkan Radonjic ◽  
Miroslav Stankovic ◽  
Patrick da Costa

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.


2020 ◽  
Vol 10 (10) ◽  
pp. 3265-3278 ◽  
Author(s):  
Marta Navarro ◽  
Luis F. Sánchez-Barba ◽  
Andrés Garcés ◽  
Juan Fernández-Baeza ◽  
Israel Fernández ◽  
...  

The binuclear aluminum complexes [AlR2(κ2-NN′;κ2-NN′)AlR2] with TBAB/PPNCl behave as excellent systems for cyclic carbonate formation from CO2 with challenging epoxides.


Sign in / Sign up

Export Citation Format

Share Document