Role of CO2 methanation into the kinetics of preferential CO oxidation on Cu/Co3O4

2019 ◽  
Vol 466 ◽  
pp. 167-180 ◽  
Author(s):  
Satyapaul A. Singh ◽  
Suhas Mukherjee ◽  
Giridhar Madras
2006 ◽  
Vol 258-260 ◽  
pp. 63-67
Author(s):  
V.M. Chumarev ◽  
V.P. Maryevich ◽  
V.A. Shashmurin

Diffusion processes play a dominant part in the macro kinetics of Fe, Ni and Co oxidation by calcium and sodium sulfates. Here, the reaction product forms a compact covering which spatially divides the reagents on the surface in the same way as in the oxidation and sulfidization of metals by oxygen and sulfur. Therefore, it is possible to assume in advance that interaction of metals with calcium and sodium sulfates will be determined not by the actual chemical reaction properly but by the diffusion transport processes.


2008 ◽  
Vol 33 (13) ◽  
pp. 3538-3542 ◽  
Author(s):  
M MORENO ◽  
G BARONETTI ◽  
M LABORDE ◽  
F MARINO

2013 ◽  
Vol 117 (23) ◽  
pp. 12054-12060 ◽  
Author(s):  
D. Vogel ◽  
C. Spiel ◽  
M. Schmid ◽  
M. Stöger-Pollach ◽  
R. Schlögl ◽  
...  

2009 ◽  
Vol 266 (2) ◽  
pp. 207-217 ◽  
Author(s):  
András Tompos ◽  
József L. Margitfalvi ◽  
Ervin Gy. Szabó ◽  
Zoltán Pászti ◽  
István Sajó ◽  
...  

1993 ◽  
Vol 58 (5) ◽  
pp. 1001-1006 ◽  
Author(s):  
Oľga Vollárová ◽  
Ján Benko

The kinetics of oxidation of [Co(en)2SCH2COO]+ with S2O82- was studied in water-methanol and water-tert-butyl alcohol mixtures. Changes in the reaction activation parameters ∆H≠ and ∆S≠ with varying concentration of the co-solvent depend on the kind of the latter, which points to a significant role of salvation effects. The solvation effect on the reaction is discussed based on a comparison of the transfer functions ∆Ht0, ∆St0 and ∆Gt0 for the initial and transition states with the changes in the activation parameters accompanying changes in the CO-solvent concentration. The transfer enthalpies of the reactant were obtained from calorimetric measurements.


Author(s):  
Aminata Hallimat Cissé ◽  
Sandrine Lioret ◽  
Blandine de Lauzon-Guillain ◽  
Anne Forhan ◽  
Ken K. Ong ◽  
...  

Abstract Background Early adiposity rebound (AR) has been associated with increased risk of overweight or obesity in adulthood. However, little is known about early predictors of age at AR. We aimed to study the role of perinatal factors and genetic susceptibility to obesity in the kinetics of AR. Methods Body mass index (BMI) curves were modelled by using mixed-effects cubic models, and age at AR was estimated for 1415 children of the EDEN mother–child cohort study. A combined obesity risk-allele score was calculated from genotypes for 27 variants identified by genome-wide association studies of adult BMI. Perinatal factors of interest were maternal age at delivery, parental education, parental BMI, gestational weight gain, maternal smoking during pregnancy, and newborn characteristics (sex, prematurity, and birth weight). We used a hierarchical level approach with multivariable linear regression model to investigate the association between these factors, obesity risk-allele score, and age at AR. Results A higher genetic susceptibility to obesity score was associated with an earlier age at AR. At the most distal level of the hierarchical model, maternal and paternal educational levels were positively associated with age at AR. Children born to parents with higher BMI were more likely to exhibit earlier age at AR. In addition, higher gestational weight gain was related to earlier age at AR. For children born small for gestational age, the average age at AR was 88 [±39] days lower than for children born appropriate for gestational age and 91 [±56] days lower than for children born large for gestational age. Conclusion The timing of AR seems to be an early childhood manifestation of the genetic susceptibility to adult obesity. We further identified low birth weight and gestational weight gain as novel predictors of early AR, highlighting the role of the intrauterine environment in the kinetics of adiposity.


Sign in / Sign up

Export Citation Format

Share Document