scholarly journals Tracking and evaluation method focusing on continuity of power line based on three-dimensional point cloud data

2021 ◽  
Vol 18 ◽  
pp. 100181
Author(s):  
Shota Takagi ◽  
Jun-ya Takayama
Author(s):  
L. Li ◽  
L. Pang ◽  
X. D. Zhang ◽  
H. Liu

Muti-baseLine SAR tomography can be used on 3D reconstruction of urban building based on SAR images acquired. In the near future, it is expected to become an important technical tool for urban multi-dimensional precision monitoring. For the moment,There is no effective method to verify the accuracy of tomographic SAR 3D point cloud of urban buildings. In this paper, a new method based on terrestrial Lidar 3D point cloud data to verify the accuracy of the tomographic SAR 3D point cloud data is proposed, 3D point cloud of two can be segmented into different facadeds. Then facet boundary extraction is carried out one by one, to evaluate the accuracy of tomographic SAR 3D point cloud of urban buildings. The experience select data of Pangu Plaza to analyze and compare, the result of experience show that the proposed method that evaluating the accuracy of tomographic SAR 3D point clou of urban building based on lidar 3D point cloud is validity and applicability


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 721
Author(s):  
Hyeon Cheol Jo ◽  
Hong-Gyoo Sohn ◽  
Yun Mook Lim

Structural health monitoring (SHM) and safety assessment are very important areas for evaluating the behavior of structures. Various wired and wireless sensors can measure the physical responses of structures, such as displacement or strain. One recently developed wireless technique is a light imaging detection and ranging (LiDAR) system that can remotely acquire three-dimensional (3D) high-precision coordinate information using 3D laser scanning. LiDAR systems have been previously used in geographic information systems (GIS) to collect information on geography and terrain. Recently, however, LiDAR is used in the SHM field to analyze structural behavior, as it can remotely detect the surface and deformation shape of structures without the need for attached sensors. This study demonstrates a strain evaluation method using a LiDAR system in order to analyze the behavior of steel structures. To evaluate the strains of structures from the initial and deformed shape, a combination of distributed 3D point cloud data and finite element methods (FEM) was used. The distributed 3D point cloud data were reconstructed into a 3D mesh model, and strains were calculated using the FEM. By using the proposed method, the strain could be calculated at any point on a structure for SHM and safety assessment during construction.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 884
Author(s):  
Chia-Ming Tsai ◽  
Yi-Horng Lai ◽  
Yung-Da Sun ◽  
Yu-Jen Chung ◽  
Jau-Woei Perng

Numerous sensors can obtain images or point cloud data on land, however, the rapid attenuation of electromagnetic signals and the lack of light in water have been observed to restrict sensing functions. This study expands the utilization of two- and three-dimensional detection technologies in underwater applications to detect abandoned tires. A three-dimensional acoustic sensor, the BV5000, is used in this study to collect underwater point cloud data. Some pre-processing steps are proposed to remove noise and the seabed from raw data. Point clouds are then processed to obtain two data types: a 2D image and a 3D point cloud. Deep learning methods with different dimensions are used to train the models. In the two-dimensional method, the point cloud is transferred into a bird’s eye view image. The Faster R-CNN and YOLOv3 network architectures are used to detect tires. Meanwhile, in the three-dimensional method, the point cloud associated with a tire is cut out from the raw data and is used as training data. The PointNet and PointConv network architectures are then used for tire classification. The results show that both approaches provide good accuracy.


2013 ◽  
Vol 796 ◽  
pp. 513-518
Author(s):  
Rong Jin ◽  
Bing Fei Gu ◽  
Guo Lian Liu

In this paper 110 female undergraduates in Soochow University are measured by using 3D non-contact measurement system and manual measurement. 3D point cloud data of human body is taken as research objects by using anti-engineering software, and secondary development of point cloud data is done on the basis of optimizing point cloud data. In accordance with the definition of the human chest width points and other feature points, and in the operability of the three-dimensional point cloud data, the width, thickness, and length dimensions of the curve through the chest width point are measured. Classification of body type is done by choosing the ratio values as classification index which is the ratio between thickness and width of the curve. The generation rules of the chest curve are determined for each type by using linear regression method. Human arm model could be established by the computer automatically. Thereby the individual model of the female upper body mannequin modeling can be improved effectively.


Author(s):  
Romina Dastoorian ◽  
Ahmad E. Elhabashy ◽  
Wenmeng Tian ◽  
Lee J. Wells ◽  
Jaime A. Camelio

With the latest advancements in three-dimensional (3D) measurement technologies, obtaining 3D point cloud data for inspection purposes in manufacturing is becoming more common. While 3D point cloud data allows for better inspection capabilities, their analysis is typically challenging. Especially with unstructured 3D point cloud data, containing coordinates at random locations, the challenges increase with higher levels of noise and larger volumes of data. Hence, the objective of this paper is to extend the previously developed Adaptive Generalized Likelihood Ratio (AGLR) approach to handle unstructured 3D point cloud data used for automated surface defect inspection in manufacturing. More specifically, the AGLR approach was implemented in a practical case study to inspect twenty-seven samples, each with a unique fault. These faults were designed to cover an array of possible faults having three different sizes, three different magnitudes, and located in three different locations. The results show that the AGLR approach can indeed differentiate between non-faulty and a varying range of faulty surfaces while being able to pinpoint the fault location. This work also serves as a validation for the previously developed AGLR approach in a practical scenario.


Author(s):  
Y. R. He ◽  
W. W. Ma ◽  
X. R. Wang ◽  
J. Q. Dai ◽  
J. L. Zheng

Abstract. The power patrol has been completed by manual field investigation, which is inefficient, costly and unsafe. In order to extract the height of the power line and its surrounding ground objects more quickly and conveniently, and better service for power line patrol. This paper uses remote sensing data of unmanned aerial vehicle to carry out aerial triangulation, stereo model establishment and binocular stereo vision height extraction base on MapMatrix software, then obtains the power line height analysis chart. Then LiDAR point cloud data is used to verify the accuracy of the power line height analysis chart. The results show that this method not only meets the standard of power line patrol, but also improves the efficiency and quality of power line patrol.


Author(s):  
Y. Hori ◽  
T. Ogawa

The implementation of laser scanning in the field of archaeology provides us with an entirely new dimension in research and surveying. It allows us to digitally recreate individual objects, or entire cities, using millions of three-dimensional points grouped together in what is referred to as "point clouds". In addition, the visualization of the point cloud data, which can be used in the final report by archaeologists and architects, should usually be produced as a JPG or TIFF file. Not only the visualization of point cloud data, but also re-examination of older data and new survey of the construction of Roman building applying remote-sensing technology for precise and detailed measurements afford new information that may lead to revising drawings of ancient buildings which had been adduced as evidence without any consideration of a degree of accuracy, and finally can provide new research of ancient buildings. We used laser scanners at fields because of its speed, comprehensive coverage, accuracy and flexibility of data manipulation. Therefore, we “skipped” many of post-processing and focused on the images created from the meta-data simply aligned using a tool which extended automatic feature-matching algorithm and a popular renderer that can provide graphic results.


Sign in / Sign up

Export Citation Format

Share Document