Lateral heat conduction based eddy current thermography for detection of parallel cracks and rail tread oblique cracks

Measurement ◽  
2015 ◽  
Vol 66 ◽  
pp. 54-61 ◽  
Author(s):  
Ruizhen Yang ◽  
Yunze He ◽  
Bin Gao ◽  
Gui Yun Tian ◽  
Jianping Peng
Author(s):  
Xiaobin Shen ◽  
Yu Zeng ◽  
Guiping Lin ◽  
Zuodong Mu ◽  
Dongsheng Wen

During the aircraft icing process caused by super-cooled droplet impingement, the surface temperature and heat flux distributions of the skin would vary due to the solid substrate heat conduction. An unsteady thermodynamic model of the phase transition was established with a time-implicit solution algorithm, in which the solid heat conduction and the water freezing were analyzed simultaneously. The icing process on a rectangular skin segment was numerically simulated, and the variations of skin temperature distribution, thicknesses of ice layer and water film were obtained. Results show that the presented model could predict the icing process more accurately, and is not sensitive to the selection of time step. The latent heat released by water freezing affects the skin temperature, which in turn changes the icing characteristics. The skin temperature distribution would be affected notably by the boundary condition of the inner skin surface, the lateral heat conduction and thermal property of the skin. It was found that the ice accretion rate of the case that the inner surface boundary is in natural convection at ambient temperature is much smaller than that with constant ambient temperature there; due to the skin lateral heat conduction, the outer skin surface temperature increases first and then decreases with uneven distribution, leading to an unsteady ice accretion rate and uneven ice thickness distribution; a smaller heat conductivity would lead to a more uneven temperature distribution and a lower ice accretion rate in most regions, but the maximum ice thickness could be larger than that of higher heat conductivity skin. Therefore, in order to predict the aircraft icing phenomenon more accurately, it is necessary to consider the solid heat conduction and the boundary conditions of the skin substrate, instead of applying a simple boundary condition of adiabatic or a fixed temperature for the outer skin surface.


2021 ◽  
Vol 10 (1) ◽  
pp. 557-570
Author(s):  
L.C. Bawankar ◽  
G.D. Kedar

In this paper a two dimensional magneto-thermoelastic problem of a thermosensitive finite conducting plate with eddy current loss is considered. It is assumed that the plate is influenced by a time-varying external magnetic field and that the heating is caused by Joule heat. The fundamental equations for magnetic field, heat conduction and elastic fields are formulated. Temperature dependent material properties and heat source as eddy current loss is considered in the heat conduction equation. Kirchhoff's variable transformation is employed to convert nonlinear to linear heat conduction equation. Integral transform technique is used to solve the magnetic field and temperature distribution. The stresses in a plane state are determined by using Airy's stress function. The numerical analysis is carried out and the results are graphically displayed.


2001 ◽  
Vol 124 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Leendert van der Tempel

The problem of transient heat conduction in a heat generating layer between two semi-infinite media has been solved. The one-dimensional thermal model is Laplace transformed. Three analytical temperature solutions are derived: two approximation solutions and an exact series solution. They are compared with respect to accuracy, convergence and computational efficiency. The approximations are computationally more efficient, and the series converge to the exact solution. The presented accurate solutions enable quick thermal analysis in terms of just 2 parameter groups, but overestimate the temperature during initialization of rewritable optical disks due to lateral heat conduction.


Sign in / Sign up

Export Citation Format

Share Document