scholarly journals Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.

2011 ◽  
Author(s):  
C. P. Tzanos ◽  
B. Dionne
2021 ◽  
Vol 910 ◽  
Author(s):  
Yiyang Jiang ◽  
Yu Guo ◽  
Zhaosheng Yu ◽  
Xia Hua ◽  
Jianzhong Lin ◽  
...  

Abstract


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Lorenzo Mazzei ◽  
Giovanni Riccio ◽  
...  

Combustor liner of present gas turbine engines is subjected to high thermal loads as it surrounds high temperature combustion reactants and is hence facing the related radiative load. This generally produces high thermal stress levels on the liner, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the flame tube life span and to ensure safe operations. The present study aims at investigating the aerothermal behavior of a GE Dry Low NOx (DLN1) class flame tube and in particular at evaluating working metal temperatures of the liner in relation to the flow and heat transfer state inside and outside the combustion chamber. Three different operating conditions have been accounted for (i.e., lean–lean partial load, premixed full load, and primary load) to determine the amount of heat transfer from the gas to the liner by means of computational fluid dynamics (CFD). The numerical predictions have been compared to experimental measurements of metal temperature showing a good agreement between CFD and experiments.


Author(s):  
Hossein Mohammad Ghasemi ◽  
Neda Gilani ◽  
Jafar Towfighi Daryan

A new arrangement of side-wall burners of an industrial furnace was studied by three-dimensional computational fluid dynamics (CFD) simulation. This simulation was conducted on ten calculation domain. Finite rate/eddy dissipation model was used as a combustion model. Discrete ordinate model (DOM) was considered as radiation model. Furthermore, weighted sum of gray gas model (WSGGM) was used to calculate radiative gas properties. Tube skin temperature and heat flux profiles were obtained by solving mass, momentum, and energy equations. Moreover, fuel rate variation was considered as an effective parameter. A base flow rate of fuel (m˙=0.0695kg/s) was assigned and different ratios (0.25 m˙, 0.5 m˙, 2 m˙, and 4 m˙) were assigned to investigate the heat distribution over the furnace. Resulted temperature and heat profiles were obtained in nonuniform mode using the proposed wall burner arrangement. According to the results, despite increased heat transfer coefficient of about 34% for m˙–4 m˙, temperature profile for this rate is too high and is harmful for tube metallurgy. Also, the proper range for fuel rate variation was determined as 0.5–2 m˙. In this range, heat transfer coefficient and Nusselt number for m˙–2 m˙ were increased by 21% and for m˙–0.25 m˙ were decreased by about 28%.


Sign in / Sign up

Export Citation Format

Share Document