plane state
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  

Abstract Many of the engineering applications have faced the delicate contact problem in the area close to the forces where it is very difficult to experimentally carry out various measurements and draw important conclusions on the condition of the contact points. In this paper the forced state in the vicinity of the forces for the half-plane will be studied. Furthermore, the qualities displayed by the half-plane under the action of normal forces, tangential forces and the moment caused by a pair of forces will be analyzed, as well as changes in the elastic characteristics for the forced plane state and the deformed plane state.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032043
Author(s):  
Iacopo Costoli ◽  
Stefano Sorace ◽  
Gloria Terenzi

Abstract Observation of damage caused by recent earthquakes highlights, once again, that the presence of infills significantly affects the seismic response of reinforced concrete (R.C.) frame buildings. Therefore, in spite of the fact that infills are non-structural elements, and thus they are normally not considered in structural analyses, in many cases their contribution should not be neglected. Based on these observations, the study proposed in this paper consists in the evaluation of the seismic response of infills in time-history finite element analyses of R.C. frame structures by means of a two-element model, constituted by two diagonal nonlinear beams. A “concrete”-type hysteretic model predicts the in-plane state of infills, through a force-displacement backbone curve expressly generated, and scanned in terms of performance limits, to this aim. This model is demonstratively applied to a real case study, i.e. a R.C. frame building including various types of brick masonry perimeter infills and internal partitions, damaged by the 30 October 2016 Central Italy earthquake. The time-histories seismic analyses carried out on it allows checking the influence of infills on the response of the structure, as well the effectiveness of the proposed model in reproducing the observed real damage on the masonry panels.


2021 ◽  
Vol 10 (1) ◽  
pp. 557-570
Author(s):  
L.C. Bawankar ◽  
G.D. Kedar

In this paper a two dimensional magneto-thermoelastic problem of a thermosensitive finite conducting plate with eddy current loss is considered. It is assumed that the plate is influenced by a time-varying external magnetic field and that the heating is caused by Joule heat. The fundamental equations for magnetic field, heat conduction and elastic fields are formulated. Temperature dependent material properties and heat source as eddy current loss is considered in the heat conduction equation. Kirchhoff's variable transformation is employed to convert nonlinear to linear heat conduction equation. Integral transform technique is used to solve the magnetic field and temperature distribution. The stresses in a plane state are determined by using Airy's stress function. The numerical analysis is carried out and the results are graphically displayed.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242454
Author(s):  
Payam Mirshams Shahshahani ◽  
James A. Ashton-Miller

Background The ability to balance on one foot for a certain time is a widely used clinical test to assess the effects of age and diseases like peripheral neuropathy on balance. While state-space methods have been used to explore the mechanical demands and achievable accelerations for balancing on two feet in the sagittal plane, less is known about the requirements for sustaining one legged balance (OLB) in the frontal plane. Research question While most studies have focused on ankle function in OLB, can age and/or disease-related decreases in maximum hip abduction strength also affect OLB ability? Methods A two-link frontal plane state space model was used to define and explore the ‘feasible balance region’ which helps reveal the requirements for maintaining and restoring OLB, given the adverse effects of age and peripheral neuropathy on maximum hip and ankle strengths. Results Maintaining quasistatic OLB required 50%-106% of the maximum hip abduction strength in young and older adults, and older patients with peripheral neuropathy. Effectiveness of a ‘hip strategy’ in recovering OLB was heavily dependent on the maximum hip abduction strength, and for healthy older women was as important as ankle strength. Natural reductions of strength due to healthy aging did not show a meaningful reduction in meeting the strength requirement of clinical OLB. However deficits in hip strength typical of patients with peripheral neuropathy did adversely affect both quasistatic OLB and recoverable OLB states. Significance The importance of hip muscle strength has been underappreciated in the clinical OLB test. This is partly because the passive tissues of the hip joint can mask moderate deficits in hip abduction strength until it is needed for recovering OLB. Adding a follow up OLB test with a slightly raised pelvis would be a simple way to check for adequate hip abductor muscle strength.


Author(s):  
Ottaviano Grisolia ◽  
Lorenzo Scano ◽  
Francesco Piccini ◽  
Antonietta Lo Conte ◽  
Massimiliano De Agostinis ◽  
...  

Abstract Previous study evaluated residual stress in a circumferential “V”-groove butt joint of a heat-recovery steam generator (HRSG) pipeline; the material was ASTM A-335-Grade P22. Aim had been to check on the influence over creep-relaxation previously found out for a tee made of the same material. The butt joint had been operating for the same period of 200,000 hours, same temperature of 528°C at almost a half pressure (0.46 Kg/mm2 vs. 1.06 Kg/mm2). X-ray diffraction (XRD) technique applied close to the weld highlighted anomalously high stress-level on the outer surface for all four butt-joint samples tested. Residual-stress over 400 MPa observed along the cylinder’s tangential direction was statically not acceptable. On the inner surface where deposited beads may have tempered adjacent base material, measurement via blind hole-drilling (BHD) technique showed a symmetrical plane-state residual-stress of 199 MPa. It was consistent with that observed via XRD on the outer surface in the cylinder’s longitudinal direction. Supposing a case of incomplete post heating planned for the weld may have explained the occurrence of being much higher than 40 MPa, value predicted after 200,000 hours. Similar influence over creep results found out for the tee and the butt joint had validated modeling welding simulation considered for both joints. A comprehensive new series of XRD tests aims now at measuring residual stress across the cylinder’s wall, both inner and outer sides. The shallow layer considered has thickness sufficient for building a map of measurements covering different depths and locations on the surface. The experimental plan includes also BHD tests supporting the XRD ones. Comparison with previous measurements roughly shows stress level increasing similarly across the cylinder’s wall from the inner side on: Average stress values, however, appear lower than previous measurements, showing better compatibility to the analysis results.


2020 ◽  
Vol 18 (4) ◽  
pp. 083-102
Author(s):  
Barbara Turoń ◽  
Bartosz Miller

The paper presents the results of updating of numerical models of the rectangular steel plate members in a plane state of stress, the updated parameter was a support length. Three different members loaded in a static or dynamic way were analyzed. The article shows examples of purely numeric updating. The data used to the update of numerical models was obtained from numerical simulations and it corresponds to the data, which can be measured by using the Digital Image Correlation (DIC) system. The main aim of the paper is to check the possibilities of the DIC system application in updating of numerical models.


2019 ◽  
Vol 24 (4) ◽  
pp. 200-223
Author(s):  
Z. Śloderbach

Abstract In this paper, the derivation of expressions for admissible values of strains and stresses for vertex points of layers subjected to tension during tube bending at bending machines is presented. The conditions of the dispersed and located loss of stability of the bent tube were assumed as criteria of instability. The original element of this paper is the extension of the criterion of strain location in a form of possible initiation of a neck or furrow (introduced by Marciniak for thin plates [1]) to bending thin- and thick-walled metal tubes at bending machines. The conditions of the dispersed and localized loss of stability together with formation of the plane state of deformation (PSD) in the plane stress state (PSS) were assumed as the criteria of instability. The calculation results were presented as graphs being useful nomograms. We present also simple examples of calculations of permissible and critical strains and values of bending angles including and not including displacement of the neutral axis y0, during cold bending metal thin-walled tubes at bending machines for bending angles <0o; 180o>.


Sign in / Sign up

Export Citation Format

Share Document