Optical-path-difference analysis and compensation for asymmetric binocular catadioptric vision measurement

Measurement ◽  
2017 ◽  
Vol 109 ◽  
pp. 233-241 ◽  
Author(s):  
Fuqiang Zhou ◽  
Xin Chen ◽  
Haishu Tan ◽  
Xinghua Chai
2012 ◽  
Author(s):  
Ming-Ying Hsu ◽  
Yu-Chuan Lin ◽  
Chia-Yen Chan ◽  
Wei-Cheng Lin ◽  
Shenq-Tsong Chan ◽  
...  

2013 ◽  
Vol 20 (2) ◽  
pp. 153-154 ◽  
Author(s):  
Ming-Ying Hsu ◽  
Han-Chao Chang ◽  
Shenq-Tsong Chang

2013 ◽  
Author(s):  
Ming-Ying Hsu ◽  
Chia-Yen Chan ◽  
Wei-Cheng Lin ◽  
Kun-Huan Wu ◽  
Chih-Wen Chen ◽  
...  

Optik ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 5420-5422
Author(s):  
H.H. Ley ◽  
A. Yahaya ◽  
Y. Munajat

1963 ◽  
Vol 1 (6) ◽  
Author(s):  
Francis E. Washer ◽  
Walter R. Darling

Author(s):  
Vinod Singh ◽  
Gaurav Singhal ◽  
Prabal Talukdar

Abstract CFD based thermal design of a transverse flow optical cavity is carried out for 1 kW Nd3+ POCl3 liquid laser source to investigate temperature and velocity distribution in the optical pumping region of the cavity. Temperature gradient and turbulence both affect the refractive index of the liquid gain medium, which results in optical path difference, divergence and hence, poorer quality of the laser beam. The main purpose of this design is to achieve uniform flow and least temperature gradient in the optical pumping region so that the optical path difference can be minimized and a good beam quality can be achieved. CFD model has been developed for carrying out thermo-fluid simulations for this thermal system and based on these simulations, an optimum geometry of inlet ports along with their position from optical pumping region have been proposed. A user defined function (UDF) is incorporated for the input of spatially varying heat source term in each cell of the optical pumping region of the cavity. Variations in refractive index and optical path difference are estimated from the temperature data using another UDF. Simulation reveals that mass flow rate between 1.5 kg/s to 2.0 kg/s maintains the optical homogeneity of gain medium. Preliminary experiments have been carried out to demonstrate the effect of flow rate on the beam divergence and thereby exhibiting the importance of present simulation work.


2001 ◽  
Vol 365 (2) ◽  
pp. 301-313 ◽  
Author(s):  
B. Sorrente ◽  
F. Cassaing ◽  
G. Rousset ◽  
S. RobbeDubois ◽  
Y. Rabbia

Sign in / Sign up

Export Citation Format

Share Document