Multispectral pyrometer for high temperature measurements inside combustion chamber of gas turbine engines

Measurement ◽  
2019 ◽  
Vol 139 ◽  
pp. 355-360 ◽  
Author(s):  
M.V. Mekhrengin ◽  
I.K. Meshkovskii ◽  
V.A. Tashkinov ◽  
V.I. Guryev ◽  
A.V. Sukhinets ◽  
...  
Author(s):  
Hejie Li ◽  
Guanghua Wang ◽  
Nirm Nirmalan ◽  
Samhita Dasgupta ◽  
Edward R. Furlong

A novel technique is developed to simultaneously measure hot surface and gas temperatures based on passive absorption/emission spectroscopy (PAS). This non-intrusive, in situ technique is the extension of multi-wavelength pyrometry to also measure gas temperature. The PAS technique uses hot surface (e.g., turbine blade) as the radiation source, and measures radiation signals at multiple wavelengths. Radiation signals at wavelengths with minimum interference from gas (mostly from water vapor and CO2) can be used to determine the hot surface temperature, while signals at wavelengths with gas absorption/emission can be used to determine the gas temperature in the line-of-sight. The detection wavelengths are optimized for accuracy and sensitivity for gas temperature measurements. Simulation results also show the effect of non-uniform gas temperature profile on measurement results. High pressure/temperature tests are conducted in single nozzle combustor rig to demonstrate sensor proof-of-concept. Preliminary engine measurement results shows the potential of this measurement technique. The PAS technique only requires one optical port, e.g., existing pyrometer or borescope port, to collect the emission signal, and thus provide practical solution for gas temperature measurement in gas turbine engines.


Author(s):  
Somnath De ◽  
Prasanna Mondal ◽  
Gourav Manohar Sardar ◽  
Rakin Bin Bokhtiar ◽  
Arijit Bhattacharya ◽  
...  

Abstract The main problem for using reliable and stable diffusion combustion in modern gas turbine engines is the production of NOx at a higher level which is not permissible for maintaining the healthy environment. Thus, combustion in lean premixed mode has become the most promising technology in many applications related to power generation gas turbine, industrial burner etc. Although the lean combustion minimizes NOx production, it suffers from an increased risk of lean blowout (LBO) when the requirement of thrust or load is low. It mainly occurs at the lean condition when the equilibrium between the flame speed and the unburnt air-fuel mixture velocity is broken. Current aircraft gas turbine engines operate fuel close to the combustion chamber which leads to the partially premixed combustion. Partially premixed combustion is also susceptible to lean blowout. Therefore, we have designed a swirl-stabilized dump combustor, where different lengths of fuel-air mixing are available. Our present work aims at improving the combustion stability by incorporating a secondary fuel injection through a pilot arrangement connected with the combustion chamber for premixed as well as partially premixed flames. Incorporation of the pilot system adds a small fraction of the total fuel into the combustion chamber directly. This investigation shows significant extension of the LBO limit towards leaner fuel-air mixture while the NOx emission in the combustion chamber is within the permissible limit. This result can be used for aircraft operators during the process of landing when fuel supply has to be decreased to reduce engine thrust or for power plants operating at low loads. The study of control is based on the colour variation of the flame which actually defines the changes in combustion characteristics. For early detection of LBO, the ratio between the intensity of red and blue colour obtained from flame images with a high speed camera is used. As LBO is approached, the ratio of red to blue intensity falls monotonically. When the ratio falls below a preset threshold, a small fraction of the total fuel is added to the central pilot line. This strategy allows the LBO limit to be shifted to a much lower equivalence ratio (maximum 20% and 11% for fully premixed and least premixed flames, respectively) without any significant increase in NOx production. The analysis includes a feedback control algorithm which is computed in MATLAB and the code is embedded in Labview for hardware implementation.


Author(s):  
David A. Shifler

High temperature applications demand materials that have a variety of properties such as high strength, toughness, creep resistance, fatigue resistance, as well as resistance to degradation by their interaction with the environment. All potential metallic materials are unstable in many high temperatures environments without the presence of a protective coating on the component surface. High temperature alloys derive their resistance to degradation by forming and maintaining a continuous protective oxide surface layer that is slow-growing, very stable, and adherent. In aggressive environments, the superalloy oxidation and corrosion resistance needs to be augmented by coatings. Propulsion materials for Naval shipboard gas turbine engines are subjected to the corrosive environment of the sea to differing degrees. Increasing fuel efficiency and platform capabilities require higher operating temperatures that may lead to new degradation modes of coatings and materials. Fuel contaminants or the lack of contaminants from alternative synthetic fuels may also strongly influence coating and/or materials performance which, in turn, can adversely affect the life in these propulsion or auxiliary gas turbine engines. This paper will dwell on some past results of materials testing and offer some views on future directions into materials research in high temperature materials in aggressive environments that will lead to new advanced propulsion materials for shipboard applications.


Author(s):  
David A. Shifler ◽  
Dennis M. Russom ◽  
Bruce E. Rodman

501-K34 marine gas turbine engines serve as auxiliary power sources for the U.S. Navy’s DDG-51 Class. It is desired that 501-K34 marine gas turbine engines have a mean time between removal of 20K hours. While some engines have approached this goal, others have fallen significantly short. A primary reason for this shortfall is hot corrosion (Type I and Type II) damage in the turbine area (more specifically the first row turbine hardware) due to both intrusion of salts from the marine air and from sulfur in the gas turbine combustion fuel. The Navy’s technical community recognizes that engine corrosion problems are complex in nature and are often tied to the design of the overall system. For this reason, two working groups were formed. One group focuses on the overall ship system design and operation, including the inlet and fuel systems. The second, the corrosion issues working group, will review the design and performance of the turbine itself and develop sound, practical, economical, and executable changes to engine design that will make it more robust and durable in the shipboard operating environment. Metallographic examination of unfailed blades removed from a marine gas turbine engine with 18000 operating hours showed that the coating thickness under the platform and in the curved area of transition between the platform to the blade stem was either very thin, or in a few cases, non-existent on each unfailed blade. Type II hot corrosion was evident at these locations under the platform. It was also observed that this corrosion under the platform led to corrosion fatigue cracking of first stage turbine blades due to poor coating quality (high porosity and variable thickness). Corrosion fatigue cracks initiated at several hot corrosion sites and had advanced through the stems to varying degrees. Cracking in a few blades had advanced to the point that would have led to premature blade failure. Low velocity, atmospheric-pressure burner-rig (LVBR) tests were conducted for 1000 hours to evaluate several alternative high-temperature coatings in both Type I and Type II hot corrosion environments. The objectives of this paper are to: (1) report the results of the hot corrosion performance of alternative high temperature coating systems for under the platform of the 1st stage blade of 501-K34 gas turbine engine, (2) compare the performance of these alternative coating systems to the current baseline 1st stage blade coating, and (3) down select the best performing coating systems (in terms of their LVBR hot corrosion and thermal cycling resistance) to implement on future 501-K34 first stage blades for the Fleet.


Sign in / Sign up

Export Citation Format

Share Document