Computationally intelligent optimization of metal cutting regimes

Measurement ◽  
2020 ◽  
Vol 152 ◽  
pp. 107358
Author(s):  
Dejan Tanikić
2016 ◽  
Vol 64 (2) ◽  
pp. 435-445 ◽  
Author(s):  
D. Tanikić ◽  
V. Marinković ◽  
M. Manić ◽  
G. Devedžić ◽  
S. Ranđelović

Abstract The heat produced in metal cutting process has negative influence on the cutting tool and the machined part in many aspects. This paper deals with measurement of cutting temperature during single-point dry machining of the AISI 4140 steel, using an infrared camera. Various combinations of cutting parameters, i.e. cutting speed, feed rate and depth of cut lead to different values of the measured cutting temperature. Analysis of the measured data should explain the trends in temperature changes depending on changes in the cutting regimes. Furthermore, the temperature data is modelled using response surface methodology and fuzzy logic. The models obtained should determine the influence of cutting regimes on cutting temperature. The main objective is the reduction of cutting temperature, i.e. enabling metal cutting process in optimum conditions.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2009 ◽  
Vol 57 (2) ◽  
pp. 197-203 ◽  
Author(s):  
T. Sinkovč

The botanical composition of grasslands determines the agronomic and natural values of swards. Good grassland management usually improves herbage value, but on the other hand it frequently decreases the plant diversity and species richness in the swards. In 1999 a field trial in a split-plot design with four replicates was therefore established on the Arrhenatherion type of vegetation in Ljubljana marsh meadows in order to investigate this relationship. Cutting regimes (2 cuts — with normal and delayed first cut, 3 cuts and 4 cuts per year) were allocated to the main plots and fertiliser treatments (zero fertiliser — control, PK and NPK with 2 or 3 N rates) were allocated to the sub-plots. The results at the 1 st cutting in the 5 th trial year were as follows: Fertilising either with PK or NPK had no significant negative effect on plant diversity in any of the cutting regimes. In most treatments the plant number even increased slightly compared to the control. On average, 20 species were listed on both unfertilised and fertilised swards. At this low to moderate level of exploitation intensity, the increased number of cuts had no significant negative effect on plant diversity either (19 species at 2 cuts vs. 20 species at 3 or 4 cuts). PK fertilisation increased the proportion of legumes in the herbage in the case of 2 or 3 cuts. The proportion of grasses in the herbage increased in all the fertilisation treatments with an increased numbers of cuts. Fertiliser treatment considerably reduced the proportion of marsh horsetail ( Equisetum palustre ) in the herbage of the meadows. This effect was even more pronounced at higher cut numbers. The proportion of Equisetum palustre in the herbage was the highest in the unfertilised sward with 2 cuts (26.4 %) and the lowest in the NPK-fertilised sward with 4 cuts (1.4%).


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2020 ◽  
Vol 40 (6) ◽  
pp. 491-494
Author(s):  
E. V. Mitin ◽  
S. P. Sul’din ◽  
A. E. Mitina
Keyword(s):  

2010 ◽  
Vol 33 (11) ◽  
pp. 2116-2125 ◽  
Author(s):  
Yan-Ping CHEN ◽  
Jian-Ke ZHANG ◽  
Jia-Ze SUN ◽  
Qing-Hua ZHENG ◽  
Zheng-Zhi LI

Sign in / Sign up

Export Citation Format

Share Document