A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing

Measurement ◽  
2020 ◽  
Vol 165 ◽  
pp. 107987 ◽  
Author(s):  
Kun Yu ◽  
Hui Ma ◽  
Tian Ran Lin ◽  
Xiang Li
2012 ◽  
Vol 152-154 ◽  
pp. 1628-1633 ◽  
Author(s):  
Su Qun Cao ◽  
Xiao Ming Zuo ◽  
Ai Xiang Tao ◽  
Jun Min Wang ◽  
Xiang Zhi Chen

In recent years, machine learning techniques have been widely used in intelligent fault diagnosis field. As a major unsupervised learning technology, cluster analysis plays an important role in fault intelligent diagnosis based on machine learning. In rolling bearing fault diagnosis, the traditional spectrum analysis method usually adopts the resonant demodulation technology, but when the inner circle, rolling body or multi-point faults produce composite modulation, it is difficulty to identify the fault type from demodulation spectral lines. According to this, a novel rolling bearing fault diagnosis method based on KFCM (Kernel-based Fuzzy C-Means) cluster analysis is proposed. Through clustering on test data and the known samples, the memberships of test data are obtained. From these, the rolling bearing fault type can be determined. Experimental results show that this method is effective.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6754
Author(s):  
Hongtao Tang ◽  
Shengbo Gao ◽  
Lei Wang ◽  
Xixing Li ◽  
Bing Li ◽  
...  

Rolling bearings are widely used in industrial manufacturing, and ensuring their stable and effective fault detection is a core requirement in the manufacturing process. However, it is a great challenge to achieve a highly accurate rolling bearing fault diagnosis because of the severe imbalance and distribution differences in fault data due to weak early fault features and interference from environmental noise. An intelligent fault diagnosis strategy for rolling bearings based on grayscale image transformation, a generative adversative network, and a convolutional neural network was proposed to solve this problem. First, the original vibration signal is converted into a grayscale image. Then more training samples are generated using GANs to solve severe imbalance and distribution differences in fault data. Finally, the rolling bearing condition detection and fault identification are carried out by using SECNN. The availability of the method is substantiated by experiments on datasets with different data imbalance ratios. In addition, the superiority of this diagnosis strategy is verified by comparing it with other mainstream intelligent diagnosis techniques. The experimental result demonstrates that this strategy can reach more than 99.6% recognition accuracy even under substantial environmental noise interference or changing working conditions and has good stability in the presence of a severe imbalance in fault data.


2010 ◽  
Vol 121-122 ◽  
pp. 813-818 ◽  
Author(s):  
Wei Guo Zhao ◽  
Li Ying Wang

On the basis of wavelet packet-characteristic entropy(WP-CE) and multiclass fuzzy support vector machine(MFSVM), the author proposes a new fault diagnosis method of vibrating of hearings,in which three layers wavelet packet decomposition of the acquired vibrating signals of hearings is performed and the wavelet packet-characteristic entropy is extracted,the eigenvector of wavelet packet of the vibrating signals is constructed,and taking this eigenvector as fault sample multiclass fuzzy support vector machine is trained to implement the intelligent fault diagnosis. The simulation result from the proposed method is effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document