scholarly journals A ring monopole quad band antenna loaded with metamaterial and slots for wireless applications

2021 ◽  
Vol 10 (5) ◽  
pp. 2716-2723
Author(s):  
Basavalinga Swamy ◽  
C. M. Tavade ◽  
Kishan Singh

The present wireless applications demand a compact, multi-operated, and stable radiation pattern antenna with good gain and impedance matching performance. To accomplish this requirement. In this paper, we propose a compact metamaterial structure loaded quad band antenna. The structural specifications/layout of the antenna consists of a circular ring monopole fed by a microstrip line. The ground part of the antenna is loaded with a metamaterial rectangular split-ring resonator (RSRR), an L-shaped slot, and two horizontally placed rectangular slots parallel to each other. No external matching circuit is utilized and impedance matching is solely controlled by the placement of slots. The antenna shows operation at 2.1 GHz (2.01-2.24 GHz, a bandwidth of 230 MHz (WLAN)), 4.5 GHz (4.35-4.66 GHz, a bandwidth of 310 MHz (C-band)), 5.5 GHz (5.37-5.77 GHz bandwidth of 400 MHz (WiMAX)), and 7.2 GHz (7.08-7.33 GHz, a bandwidth of 250 MHz (satellite band)). The antenna exhibits good gain and stable radiation pattern in both the plane and thus can be utilized for aforementioned applications.

2021 ◽  
Vol 36 (6) ◽  
pp. 718-725
Author(s):  
Narayanasamy RajeshKumar ◽  
Palani Sathya ◽  
Sharul Rahim ◽  
Akaa Eteng

An innovative method is proposed to improve the cross-polarization performance and impedance matching of a microstrip antenna by integrating a complimentary split ring resonator and slots as a defected ground structure. An equivalent circuit model (ECM) enables the design take into consideration the mutual coupling between the antenna patch and the Defected Ground Structure. The input impedance and surface current density analysis confirms that the integration of a CSRR within a rectangular microstrip patch antenna leads to uniform comparative cross-polarization level below 40 dB in the H-plane, over an angular range of ± 50°. Introducing parallel slots, as well, leads to a reduction of spurious antenna radiation, thereby improving the impedance matching. Measurements conducted on a fabricated prototype are consistent with simulation results. The proposed antenna has a peak gain of 4.16 dB at 2.6 GHz resonating frequency, and hence is good candidate for broadband service applications.


2013 ◽  
Vol 55 (4) ◽  
pp. 814-816 ◽  
Author(s):  
D. Laila ◽  
R. Sujith ◽  
V.A. Shameena ◽  
C.M. Nijas ◽  
V.P. Sarin ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
V. P. Sarin ◽  
M. P. Jayakrishnan ◽  
C. K. Aanandan ◽  
M. Pezholil ◽  
V. Kesavath

The enhanced radiation performance of a dipole antenna backed by the split ring resonator-continuous wire pair array working in the H┴ excitation scenario is presented in this paper.  The H┴ excitation scenario of the metamaterial is used to get zero reflection phase resulting in enhanced gain performance. The two layer meta-structure along with the dipole is fabricated on a low cost substrate of dielectric constant 4.4 and height 1mm. The reflection properties of the metamaterial structure and its effect on the radiation performance of the dipole antenna are presented in this paper.


2012 ◽  
Vol 54 (6) ◽  
pp. 1415-1416 ◽  
Author(s):  
P. Menon. Ragi ◽  
K. S. Umadevi ◽  
Paul. Nees ◽  
Jovia Jose ◽  
M. V. Keerthy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document