Damage detection and localization of a steel truss bridge model subjected to impact and white noise excitations using empirical wavelet transform neural network approach

Measurement ◽  
2021 ◽  
Vol 185 ◽  
pp. 110060
Author(s):  
Asma Alsadat Mousavi ◽  
Chunwei Zhang ◽  
Sami F. Masri ◽  
Gholamreza Gholipour
Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1271 ◽  
Author(s):  
Asma Alsadat Mousavi ◽  
Chunwei Zhang ◽  
Sami F. Masri ◽  
Gholamreza Gholipour

Vibrations of complex structures such as bridges mostly present nonlinear and non-stationary behaviors. Recently, one of the most common techniques to analyze the nonlinear and non-stationary structural response is Hilbert–Huang Transform (HHT). This paper aims to evaluate the performance of HHT based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) technique using an Artificial Neural Network (ANN) as a proposed damage detection methodology. The performance of the proposed method is investigated for damage detection of a scaled steel-truss bridge model which was experimentally established as the case study subjected to white noise excitations. To this end, four key features of the intrinsic mode function (IMF), including energy, instantaneous amplitude (IA), unwrapped phase, and instantaneous frequency (IF), are extracted to assess the presence, severity, and location of the damage. By analyzing the experimental results through different damage indices defined based on the extracted features, the capabilities of the CEEMDAN-HT-ANN model in detecting, addressing the location and classifying the severity of damage are efficiently concluded. In addition, the energy-based damage index demonstrates a more effective approach in detecting the damage compared to those based on IA and unwrapped phase parameters.


2013 ◽  
Vol 405-408 ◽  
pp. 1500-1503 ◽  
Author(s):  
Zhi Jie Sun ◽  
Yong Qian Liu

Combine the specific bridge, an analytical on the bridges static performance studied through the finite element model analysis and field test method. Summary and analyze the displacement and stress variation law of the main truss, longitudinal beams and beams which the bolt and weld superstructure steel truss bridges are effected by static loads, and compared field test results with theory value. Application practice proves that the evaluation standard and inspection of steel truss bridge is appropriate.


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


1997 ◽  
Author(s):  
Daniel Benzing ◽  
Kevin Whitaker ◽  
Dedra Moore ◽  
Daniel Benzing ◽  
Kevin Whitaker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document