Calibration of Triaxial Accelerometers by Constant Rotation Rate in the Gravitational Field

Measurement ◽  
2021 ◽  
pp. 110528
Author(s):  
Michael Gaitan ◽  
Jon Geist
1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1984 ◽  
Vol 75 ◽  
pp. 361-362
Author(s):  
André Brahic

AbstractThe dynamical evolution of planetary discs in the gravitational field of an oblate planet and a satellite is numerically simulated.


2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-109-Pr5-112
Author(s):  
J.-F. Dufrêche ◽  
J.-P. Simonin ◽  
P. Turq

1971 ◽  
Vol 105 (12) ◽  
pp. 780-781 ◽  
Author(s):  
Ya.B. Zel'dovich ◽  
Lev P. Pitaevskii ◽  
Valentin S. Popov ◽  
Aleksei A. Starobinskii

1996 ◽  
Vol 451 ◽  
Author(s):  
S. D. Leith ◽  
D. T. Schwartz

ABSTRACTDescribed are results showing that an oscillating flow-field can induce spatially periodic composition variations in electrodeposited NiFe films. Flow-induced NiFe composition modulated alloys (CMA's) were deposited on the disk of a rotating disk electrode by oscillating the disk rotation rate during galvanostatic plating. Deposit composition and structure were investigated using potentiostatic stripping voltammetry and scanning probe microscopy. Results illustrate a linear relationship between the composition modulation wavelength and the flow oscillation period. CMA's with wavelengths less than 10 nm can be fabricated when plating with a disk rotation rate oscillation period less than 3 seconds.


Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Sign in / Sign up

Export Citation Format

Share Document