Real-time measurement of temperature field in heavy-duty machine tools using fiber Bragg grating sensors and analysis of thermal shift errors

Mechatronics ◽  
2015 ◽  
Vol 31 ◽  
pp. 16-21 ◽  
Author(s):  
Jun Huang ◽  
Zude Zhou ◽  
Mingyao Liu ◽  
Erlong Zhang ◽  
Ming Chen ◽  
...  
2017 ◽  
Vol 38 ◽  
pp. 147-153 ◽  
Author(s):  
Jinwoo Park ◽  
Yong Seok Kwon ◽  
Myeong Ock Ko ◽  
Min Yong Jeon

2011 ◽  
Vol 8 (1) ◽  
pp. 409048 ◽  
Author(s):  
Chuliang Wei ◽  
Qin Xin ◽  
W. H. Chung ◽  
Shun-yee Liu ◽  
Hwa-yaw Tam ◽  
...  

Wheel defects on trains, such as flat wheels and out-of-roundness, inevitably jeopardize the safety of railway operations. Regular visual inspection and checking by experienced workers are the commonly adopted practice to identify wheel defects. However, the defects may not be spotted in time. Therefore, an automatic, remote-sensing, reliable, and accurate monitoring system for wheel condition is always desirable. The paper describes a real-time system to monitor wheel defects based on fiber Bragg grating sensors. Track strain response upon wheel-rail interaction is measured and processed to generate a condition index which directly reflects the wheel condition. This approach is verified by extensive field test, and the preliminary results show that this electromagnetic-immune system provides an effective alternative for wheel defects detection. The system significantly increases the efficiency of maintenance management and reduces the cost for defects detection, and more importantly, avoids derailment timely.


Author(s):  
Hong-Il Kim ◽  
Lae-Hyong Kang ◽  
Jae-Hung Han

Dimensional stability of the space structures, such as large telescope mirrors or metering substructures, is very important because even extremely small deformations of these structures might degrade the optical performances. Therefore, precise deformation data of the space structures according to environment change are required to design these structures correctly. Also, real-time deformation monitoring of these structures in space environment is demanded to verify whether these structures are properly designed or manufactured. FBG (fiber Bragg grating) sensors are applicable to real time monitoring of the space structure because they can be embedded onto the structures with minimal weight penalty. In this research, therefore, thermal deformation measurement system for the space structures, composed of FBG sensors for real time strain measurement and DMI (displacement measuring interferometers) for accurate specimen expansion data acquisition, is developed. Thermal strains measured by distributed FBG sensors are evaluated by the comparison with the strains obtained by highly accurate DMI.


Sign in / Sign up

Export Citation Format

Share Document