A quick multi-step discretization and parallelization wear simulation model for crown gear coupling with misalignment angle

2022 ◽  
Vol 168 ◽  
pp. 104576
Author(s):  
Yabin Guan ◽  
Jigang Chen ◽  
Zongde Fang ◽  
Shengyang Hu
1999 ◽  
Author(s):  
Ch. Hohmann ◽  
K. Schiffner ◽  
J. Brecht

Author(s):  
K. Daubach ◽  
M. Oehler ◽  
B. Sauer

AbstractWear phenomena in worm gears are dependent on the size of the gears. Whereas larger gears are mainly affected by fatigue wear, abrasive wear is predominant in smaller gears. In this context a simulation model for abrasive wear of worm gears was developed, which is based on an energetic wear equation. This approach associates wear with solid friction energy occurring in the tooth contact. The physically-based wear simulation model includes a tooth contact analysis and tribological calculation to determine the local solid tooth friction and wear. The calculation is iterated with the modified tooth flank geometry of the worn worm wheel, in order to consider the influence of wear on the tooth contact. Experimental results on worm gears are used to determine the wear model parameter and to validate the model. A simulative study for a wide range of worm gear geometries was conducted to investigate the influence of geometry and operating conditions on abrasive wear.


1998 ◽  
Vol 94 (3) ◽  
pp. 417-433 ◽  
Author(s):  
MARTIN VAN DER HOEF ◽  
PAUL MADDEN

ICTIS 2013 ◽  
2013 ◽  
Author(s):  
Shengli Li ◽  
Zhengwei He ◽  
Jia Shi ◽  
Youqin Zheng ◽  
Xiaoqiao Geng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document