scholarly journals Wear simulation of worm gears based on an energetic approach

Author(s):  
K. Daubach ◽  
M. Oehler ◽  
B. Sauer

AbstractWear phenomena in worm gears are dependent on the size of the gears. Whereas larger gears are mainly affected by fatigue wear, abrasive wear is predominant in smaller gears. In this context a simulation model for abrasive wear of worm gears was developed, which is based on an energetic wear equation. This approach associates wear with solid friction energy occurring in the tooth contact. The physically-based wear simulation model includes a tooth contact analysis and tribological calculation to determine the local solid tooth friction and wear. The calculation is iterated with the modified tooth flank geometry of the worn worm wheel, in order to consider the influence of wear on the tooth contact. Experimental results on worm gears are used to determine the wear model parameter and to validate the model. A simulative study for a wide range of worm gear geometries was conducted to investigate the influence of geometry and operating conditions on abrasive wear.

Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 20 ◽  
Author(s):  
Gajarajan Sivayogan ◽  
Ramin Rahmani ◽  
Homer Rahnejat

Energy efficiency and functional reliability are the two key requirements in the design of high-performance transmissions. Therefore, a representative analysis replicating real operating conditions is essential. This paper presents the thermoelastohydrodynamic lubrication (TEHL) of meshing spur gear teeth of high-performance racing transmission systems, where high generated contact pressures and lubricant shear lead to non-Newtonian traction. The determination of the input contact geometry of meshing pairs as well as contact kinematics are essential steps for representative TEHL. These are incorporated in the current analysis through the use of Lubricated Loaded Tooth Contact Analysis (LLTCA), which is far more realistic than the traditional Tooth Contact Analysis (TCA). In addition, the effects of lubricant and flash surface temperature rise of contacting pairs, leading to the thermal thinning of lubricant, are taken into account using a thermal network model. Furthermore, high-speed contact kinematics lead to shear thinning of the lubricant and reduce the film thickness under non-Newtonian traction. This comprehensive approach based on established TEHL analysis, particularly including the effect of LLTCA on the TEHL of spur gears, has not hitherto been reported in literature.


2018 ◽  
Vol 12 (1) ◽  
pp. JAMDSM0026-JAMDSM0026 ◽  
Author(s):  
Shigenori HAMADA ◽  
Kazumasa KAWASAKI ◽  
Isamu TSUJI

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Wei-Shiang Wang ◽  
Zhang-Hua Fong

This paper proposes a new type of double-crowned helical gear that can be continuously cut on a modern Cartesian-type hypoid generator with two face-hobbing head cutters and circular-arc cutter blades. The gear tooth flank is double crowned with a cycloidal curve in the longitudinal direction and a circular arc in the profile direction. To gauge the sensitivity of the transmission errors and contact patterns resulting from various assembly errors, this paper applies a tooth contact analysis technique and presents several numerical examples that show the benefit of the proposed double-crowned helical gear set. In contrast to a conventional helical involute gear, the tooth bearing and transmission error of the proposed gear set are both controllable and insensitive to gear-set assembly error.


Author(s):  
F Yang ◽  
D Su ◽  
C. R. Gentle

A new approach has been developed by the authors to estimate the load share of worm gear drives, and to calculate the instantaneous tooth meshing stiffness and loaded transmission errors. In the approach, the finite element (FE) modelling is based on the modified tooth geometry, which ensures that the worm gear teeth are in localized contact. The geometric modelling method for involute worm gears allows the tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of finite element analysis, the instantaneous meshing stiffness and loaded transmission errors are obtained and the load share is predicted. In comparison with existing methods, this approach applies loaded tooth contact analysis and provides more accurate load capacity rating of worm gear drives.


2004 ◽  
Vol 127 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Vilmos Simon

A method for computer aided loaded tooth contact analysis in different types of cylindrical worm gears is proposed. The method covers both cases—that of the theoretical line and point contact. The geometry and kinematics of a worm gear pair based on the generation of worm gear teeth by a hob is presented. The full loaded tooth contact analysis of such a gear pair is performed. A computer program based on the theoretical background presented has been developed. By using this program the path of contact, the potential contact lines, the separations of mating surfaces along these contact lines, the load distribution and transmission errors for different types of modified and nonmodified worm gear pairs are calculated and graphically presented. The influence of gear tooth modifications on tooth contact is investigated and discussed.


Author(s):  
Zongde Fang ◽  
Hongbin Yang ◽  
Yanwei Zhou ◽  
Xiaozhong Deng

Abstract A new approach for optimizing the dynamic behavior of spiral bevel gear drives has been developed. The local synthesis, tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA) techniques were used to constitute the design process with feedback, by which a contact ratio being near 2.0 or 3.0 would be achieved. An improved dynamic behavior of the spiral bevel gear drives under certain operating load or a wide range of load could be obtained.


Author(s):  
K. J. Sharif ◽  
S Kong ◽  
H. P. Evans ◽  
R. W. Snidle

The paper presents the results of modelling the contact and elastohydrodynamic lubrication (EHL) effects between the teeth of worm gears. A number of different practical worm gear designs have been studied covering a wide range of sizes and potential applications, from small instrument drives to high power units. All the designs are of the popular ZI type, in which the worm is an involute helicoid, with deliberate mismatch of tooth conformity in order to avoid damaging edge contact. The results cover loaded tooth contact analysis (‘loaded TCA’) under dry conditions, predicted film-generating behaviour with lubrication, surface and oil film temperatures, and calculated values of friction and transmission efficiency. It is demonstrated that regions of poor film formation may be predicted in a qualitative way on the basis of loaded TCA together with consideration of the kinematics of entrainment at the contacts.


2019 ◽  
Vol 72 (3) ◽  
pp. 359-368
Author(s):  
Hulin Li ◽  
Zhongwei Yin ◽  
Yanzhen Wang

Purpose The purpose of this paper is to study the friction and wear properties of journal bearings under different working conditions. Design/methodology/approach Friction coefficient and wear losses of journal bearing under different working conditions have been determined by a bearing test rig. The worn surfaces of bearing were examined by scanning electron microscopy and laser three-dimensional micro-imaging profile measurements, and the tribological behavior and wear mechanisms were investigated. Findings The wear loss and friction coefficient of bearing under starting-stopping working condition is far greater than that of steady-state working conditions. In addition, the maximum wear loss under start-up and stop conditions is about 120 times of that under stable operating conditions. Under stable working conditions, the main wear forms of bearings are abrasive wear, under starting-stopping working conditions the main wear mechanisms of bearings are adhesion wear, abrasive wear and fatigue wear. Originality/value These research results have certain practical value for understanding the tribology behavior of journal bearings under different working conditions.


2010 ◽  
Vol 37-38 ◽  
pp. 643-647
Author(s):  
Tao Yu ◽  
Ke Dong ◽  
Su Yu Wang ◽  
Yu Xia Qian

Gear honing with globoid honing worms is seldom used because it has no distinct advantages to honing with internal geared honing rings. The paper puts forward a new process to honing gear with globoid honing worms on hobbing machines. First the globoid honing worm is profiled by diamond dressing gears, which has the same geometric parameters with the machined gears. Then the profiled globoid honing worm is used to hone workpieces. Both the profiling process and honing process are implemented on same hobbing machines. Meshing and Tooth contact analysis of globoid honing worm profiling has been considered. Meshing equation of profiling process and equation of globoid honing worm tooth flank after profiling are obtained. Experiment testified that it is an applied process and has many advantages.


Sign in / Sign up

Export Citation Format

Share Document