Type synthesis of single-loop deployable mechanisms based on improved atlas method for single-DOF grasping manipulators

2022 ◽  
Vol 169 ◽  
pp. 104656
Author(s):  
Yang Zhang ◽  
Hailin Huang ◽  
Tao Mei ◽  
Bing Li
2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


Author(s):  
Wei Ye ◽  
Yuefa Fang ◽  
Sheng Guo ◽  
Haibo Qu

In this paper, the motion equivalent chain method is proposed and then applied to the type synthesis of a class of 2R2T parallel mechanism. The equivalent serial chains are synthesized for a specific 2R2T motion pattern based on screw theory. Feasible limb structures that provide a constraint couple and a constraint force are enumerated according to the reciprocity of the twist and wrench systems. Several motion equivalent single loop chains are constructed with the equivalent serial chains. Using motion equivalent single loop chains to replace the equivalent serial chains, a class of 2R2T parallel mechanisms is obtained based on the foundation of motion equivalent single loop chain structures.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Fugui Xie ◽  
Xin-Jun Liu ◽  
Tiemin Li

This paper focuses on the 1T2R-type (T: translational DOF; R: rotational DOF) parallel robotic mechanisms (PKMs) and discusses their type synthesis and typical application in five-axis machine tools. Based on Grassmann line geometry and atlas method, a systematic method dealing with the type synthesis of lower mobility PKMs is introduced. The Blanding rules and generalized Blanding rules, which are the criterions in realizing the mutual conversion between the freedom-space atlas and the constraint-space atlas, are summarized and discussed in detail. Thereafter, the entire procedure of the type synthesis is presented, and the type synthesis of 1T2R PKMs is carried out. Based on the synthesis results, a five-axis hybrid mechanism is proposed and a machine tool is developed consequently. The type synthesis method presented in this paper is intuitive and concise and can be used in the type synthesis of other lower mobility PKMs.


2020 ◽  
Vol 145 ◽  
pp. 103695 ◽  
Author(s):  
Luquan Li ◽  
Yuefa Fang ◽  
Sheng Guo ◽  
Haibo Qu ◽  
Lin Wang

1985 ◽  
Vol 20 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Rasim I Alizade ◽  
E.T Hajiyev ◽  
George N Sandor

Sign in / Sign up

Export Citation Format

Share Document