scholarly journals Local fracture toughness measurements in polycrystalline cubic zirconia using micro-cantilever bending tests

2019 ◽  
Vol 136 ◽  
pp. 103086 ◽  
Author(s):  
Ronan Henry ◽  
Thierry Blay ◽  
Thierry Douillard ◽  
Armel Descamps-Mandine ◽  
Isabelle Zacharie-Aubrun ◽  
...  
2012 ◽  
pp. 93-102 ◽  
Author(s):  
Ralf Webler ◽  
Markus Krottenthaler ◽  
Steffen Neumeier ◽  
Karsten Durst ◽  
Mathias Göken

2022 ◽  
pp. 110398
Author(s):  
Jae-Hoon Choi ◽  
Hojang Kim ◽  
Ji-Young Kim ◽  
Kwang-Hyeok Lim ◽  
Byung-Chai Lee ◽  
...  

2020 ◽  
Vol 538 ◽  
pp. 152209 ◽  
Author(s):  
Ronan Henry ◽  
Isabelle Zacharie-Aubrun ◽  
Thierry Blay ◽  
Smail Chalal ◽  
Jean-Marie Gatt ◽  
...  

Author(s):  
Shinobu Kawaguchi ◽  
Naoto Hagiwara ◽  
Mitsuru Ohata ◽  
Masao Toyoda

A method of predicting the leak/rupture criteria for API 5L X80 and X100 linepipes was evaluated, based on the results of hydrostatic full-scale tests for X60, X65, X80 and X100 linepipes with an axially through-wall (TW) notch. The TW notch test results clarified the leak/rupture criteria, that is, the relationship between the initial notch lengths and the maximum hoop stresses during the TW notch tests. The obtained leak/rupture criteria were then compared to the prediction of the Charpy V-notch (CVN) absorbed energy-based equation, which has been proposed by Kiefner et al. The comparison revealed that the CVN-based equation was not applicable to the pipes having a CVN energy (Cv) greater than 130 J and flow stress greater than X65. In order to predict the leak/rupture criteria for these linepipes, the static absorbed energy for ductile cracking, (Cvs)i, was introduced as representing the fracture toughness of a pipe material. The (Cvs)i value was determined from the microscopic observation of the cut and buffed Charpy V-notch specimens after static 3-point bending tests. The CVN energy in the original CVN-based equation was replaced by an equivalent CVN energy, (Cv)eq’ which was defined as follows: (Cv)eq = 4.5 (Cvs)i. The leak/rupture criteria for the X80 and X100 linepipes with higher CVN energies were reasonably predicted by the modified equation using the (Cvs)i value.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880734
Author(s):  
Jian He ◽  
Dongyuan Xie ◽  
Qichao Xue ◽  
Yangyang Zhan

The diffusion influence of seawater on the static and interlayer cracking properties of a polyvinyl chloride foam sandwich structure is investigated in this study. After soaking specimens in seawater for various durations, various comparison tests are performed to investigate the effects of seawater. Compression tests for H60 and H200 polyvinyl chloride foam specimens are conducted to study strength and modulus degradation, and the results show that immerging time and temperature have significant effects on polyvinyl chloride foam properties. Tensile tests for glass-fibre-reinforced plastic panels, four-point bending tests and double cantilever bending tests for polyvinyl chloride foam sandwich specimens are also performed. The results show that seawater immerging treatment has a noticeable influence on glass-fibre-reinforced plastic tensile properties and interlayer critical energy release rate values, but has almost no effect on bending properties of foam sandwich specimen. Furthermore, a rate-dependent phenomenon is observed in double cantilever bending tests, in which higher loading rate will lead to larger critical energy release values. Numerical simulation is also performed to illustrate the cracking process of double cantilever bending tests and shows a certain accuracy. The simulation also demonstrates that the viscoelasticity of foam material after immerging treatment results in the rate-dependent characterization of double cantilever bending tests.


2020 ◽  
Vol 52 (8) ◽  
pp. 1732-1741
Author(s):  
Xiangqing Li ◽  
Zhenyu Ding ◽  
Chang Liu ◽  
Shiyi Bao ◽  
Hao Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document