Modeling of thermo-electro-magnetic-elastic waves in a transversely isotropic circular fiber

2016 ◽  
Vol 73 ◽  
pp. 47-57 ◽  
Author(s):  
P. Ponnusamy ◽  
A. Amuthalakshmi
Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. T63-T77 ◽  
Author(s):  
Jiubing Cheng ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Peng Zou ◽  
Chenlong Wang

In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied [Formula: see text]-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.


Geophysics ◽  
1993 ◽  
Vol 58 (7) ◽  
pp. 964-977 ◽  
Author(s):  
Chaur‐Jian Hsu ◽  
Michael Schoenberg

Ultrasonic velocities were measured on a block composed of lucite plates with roughened surfaces pressed together with a static normal stress to simulate a fractured medium. The measurements, normal, parallel, and oblique to the fractures, show that for wavelengths much larger than the thickness of an individual plate, the block can be modeled as a particular type of transversely isotropic (TI) medium that depends on four parameters. This TI medium behavior is the same as that of an isotropic solid in which are embedded a set of parallel linear slip interfaces, specified by (1) the excess compliance tangential to the interfaces and (2) the excess compliance normal to the interfaces. At all static stress levels, we inverted the data for the background isotropic medium parameters and the excess compliances. The background parameters obtained were basically independent of stress level and agreed well with the bulk properties of the lucite. The excess compliances decreased with increasing static closing stress, implying that increasing static stress forces asperities on either side of a fracture into greater contact, gradually eliminating the excess compliance that gives rise to the anisotropy. A medium with such planes of excess compliance has been shown, theoretically, to describe the behavior of a medium with long parallel joints, as well as a medium with embedded parallel microcracks.


The displacements due to a radiating point source in an infinite anisotropic elastic medium are found in terms of Fourier integrals. The integrals are evaluated asymptotically, yielding explicit expressions for displacements at points far from the source. The relative amplitudes of waves from a point source are thus determined, and it is found that although in general the decay of wave amplitudes is proportional to the distance from the source, it is possible that in certain directions the decay is less than this. The method used in this paper is also shown to be an alternative way of deriving known results concerning the geometry of the propagation of disturbances. As an example, the radiation in a transversely isotropic medium from an isolated force varying harmonically with time is discussed.


Sign in / Sign up

Export Citation Format

Share Document