Incorporating the Hybrid Deformable Model for Improving the Performance of Abdominal CT Segmentation via Multi-Scale Feature Fusion Network

2021 ◽  
pp. 102156
Author(s):  
Xiaokun Liang ◽  
Na Li ◽  
Zhicheng Zhang ◽  
Jing Xiong ◽  
Shoujun Zhou ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1426
Author(s):  
Chuanyang Liu ◽  
Yiquan Wu ◽  
Jingjing Liu ◽  
Jiaming Han

Insulator detection is an essential task for the safety and reliable operation of intelligent grids. Owing to insulator images including various background interferences, most traditional image-processing methods cannot achieve good performance. Some You Only Look Once (YOLO) networks are employed to meet the requirements of actual applications for insulator detection. To achieve a good trade-off among accuracy, running time, and memory storage, this work proposes the modified YOLO-tiny for insulator (MTI-YOLO) network for insulator detection in complex aerial images. First of all, composite insulator images are collected in common scenes and the “CCIN_detection” (Chinese Composite INsulator) dataset is constructed. Secondly, to improve the detection accuracy of different sizes of insulator, multi-scale feature detection headers, a structure of multi-scale feature fusion, and the spatial pyramid pooling (SPP) model are adopted to the MTI-YOLO network. Finally, the proposed MTI-YOLO network and the compared networks are trained and tested on the “CCIN_detection” dataset. The average precision (AP) of our proposed network is 17% and 9% higher than YOLO-tiny and YOLO-v2. Compared with YOLO-tiny and YOLO-v2, the running time of the proposed network is slightly higher. Furthermore, the memory usage of the proposed network is 25.6% and 38.9% lower than YOLO-v2 and YOLO-v3, respectively. Experimental results and analysis validate that the proposed network achieves good performance in both complex backgrounds and bright illumination conditions.


Sign in / Sign up

Export Citation Format

Share Document