Differential antibody responses to the major antigenic sites of FMD virus serotype O after primo-vaccination, multiply-vaccination and after natural exposure

2020 ◽  
Vol 78 ◽  
pp. 104105
Author(s):  
Jitendra K. Biswal ◽  
Saravanan Subramaniam ◽  
Rajeev Ranjan ◽  
Kimberly VanderWaal ◽  
Aniket Sanyal ◽  
...  
2000 ◽  
Vol 7 (1) ◽  
pp. 40-44 ◽  
Author(s):  
T. Herremans ◽  
J. H. J. Reimerink ◽  
T. G. Kimman ◽  
H. G. A. M. van der Avoort ◽  
M. P. G. Koopmans

ABSTRACT Three important antigenic sites involved in virus neutralization on polioviruses in mouse experiments have been identified. These sites are located at the surface of the virion and have been designated antigenic sites 1, 2, and 3. In mice, the antibody response to antigenic site 1 of serotype 3 poliovirus is considered to be immunodominant, but little is known about the immunogenicity of these sites in humans. In the present study, we developed inhibition enzyme-linked immunosorbent assays specific for antigenic sites 1 and 3 to measure antibody responses to these sites in fully vaccinated inactivated poliovirus vaccine (IPV) (n = 63) and oral live attenuated poliovirus vaccine (OPV) (n = 63) recipients and in naturally infected persons (n = 25). Similar levels of antibodies to site 1 in IPV and OPV vaccinees were detected. However, significantly more OPV recipients (88.7%) had detectable antibodies to antigenic site 3 (P < 0.01) than did IPV-vaccinated persons (63.1%). After an IPV booster vaccination, both previously IPV- and OPV-vaccinated persons responded with a significant increase in antibodies to sites 1 and 3 (P < 0.01). We conclude that the immune response to serotype 3 poliovirus in humans consists of both site 1- and site 3-specific antibodies and that these responses can be induced by either OPV or recent IPV vaccination.


2015 ◽  
Vol 20 (2) ◽  
pp. 57-68
Author(s):  
Mohamed Elshahidy ◽  
Mona Fares ◽  
M. Shaheen ◽  
M. Mandour
Keyword(s):  

2021 ◽  
pp. 104914
Author(s):  
Zahra Naeem ◽  
Sohail Raza ◽  
Saba Afzal ◽  
Ali Ahmad Sheikh ◽  
Muhammad Muddassir Ali ◽  
...  

2014 ◽  
Vol 95 (5) ◽  
pp. 1104-1116 ◽  
Author(s):  
Amin S. Asfor ◽  
Sasmita Upadhyaya ◽  
Nick J. Knowles ◽  
Donald P. King ◽  
David J. Paton ◽  
...  

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.


2011 ◽  
Vol 92 (10) ◽  
pp. 2297-2309 ◽  
Author(s):  
F. F. Maree ◽  
B. Blignaut ◽  
J. J. Esterhuysen ◽  
T. A. P. de Beer ◽  
J. Theron ◽  
...  

Foot-and-mouth disease virus (FMDV) outer capsid proteins 1B, 1C and 1D contribute to the virus serotype distribution and antigenic variants that exist within each of the seven serotypes. This study presents phylogenetic, genetic and antigenic analyses of South African Territories (SAT) serotypes prevalent in sub-Saharan Africa. Here, we show that the high levels of genetic diversity in the P1-coding region within the SAT serotypes are reflected in the antigenic properties of these viruses and therefore have implications for the selection of vaccine strains that would provide the best vaccine match against emerging viruses. Interestingly, although SAT1 and SAT2 viruses displayed similar genetic variation within each serotype (32 % variable amino acids), antigenic disparity, as measured by r1-values, was less pronounced for SAT1 viruses compared with SAT2 viruses within our dataset, emphasizing the high antigenic variation within the SAT2 serotype. Furthermore, we combined amino acid variation and the r1-values with crystallographic structural data and were able to predict areas on the surface of the FMD virion as antigenically relevant. These sites were mostly consistent with antigenic sites previously determined for types A, O and C using mAbs and escape mutant studies. Our methodology offers a quick alternative to determine antigenic relevant sites for FMDV field strains.


Sign in / Sign up

Export Citation Format

Share Document