Activated protein C: Therapeutic implications for Alzheimer’s disease

2007 ◽  
Vol 69 (3) ◽  
pp. 701-702 ◽  
Author(s):  
Kursad Genc
2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


1994 ◽  
pp. 65-71
Author(s):  
Warren J. Strittmatter ◽  
David Y. Huang ◽  
Ann Saunders ◽  
Donald Schmechel ◽  
Margaret Pericak-Vance ◽  
...  

2018 ◽  
Vol 12 ◽  
Author(s):  
Jun-Lin Liu ◽  
Yong-Gang Fan ◽  
Zheng-Sheng Yang ◽  
Zhan-You Wang ◽  
Chuang Guo

Author(s):  
Rishika Dhapola ◽  
Subhendu Shekhar Hota ◽  
Phulen Sarma ◽  
Anusuya Bhattacharyya ◽  
Bikash Medhi ◽  
...  

2021 ◽  
Author(s):  
Swati Mishra ◽  
Allison Knupp ◽  
Marcell Szabo ◽  
Chizuru Kinoshita ◽  
Dale W. Hailey ◽  
...  

Background: Loss of the Sortilin-related receptor 1 (SORL1) gene seems to act as a causal event for Alzheimer's disease (AD). Recent studies have established that loss of SORL1, as well as mutations in autosomal dominant AD genes APP and PSEN1/2, pathogenically converge by swelling early endosomes, AD's cytopathological hallmark. Acting together with the retromer trafficking complex, SORL1 has been shown to regulate the recycling of the amyloid precursor protein (APP) out of the endosome, contributing to endosomal swelling and to APP misprocessing. We hypothesized that SORL1 plays a broader role in neuronal endosomal recycling and used human induced pluripotent stem cell derived neurons (hiPSC-Ns) to test this hypothesis. We examined endosomal recycling of three transmembrane proteins linked to AD pathophysiology: APP, the BDNF receptor Tropomyosin-related kinase B (TRKB), and the glutamate receptor subunit AMPA1 (GLUA1). Methods: We used isogenic hiPSCs engineered to have SORL1 depleted or to have enhanced SORL1 expression. We differentiated neurons from these cell lines and mapped the trafficking of APP, TRKB and GLUA1 within the endosomal network using confocal microscopy. We also performed cell surface recycling and lysosomal degradation assays to assess the functionality of the endosomal network. Finally, we analyzed alterations in gene expression in SORL1 depleted neurons using RNA-sequencing. Results: We find that as with APP, endosomal trafficking of GLUA1 and TRKB is impaired by loss of SORL1. Conversely, increased SORL1 expression enhances endosomal recycling for APP and GLUA1. Our unbiased transcriptomic data further support SORL1's role in endosomal recycling. We observe altered expression networks that regulate cell surface trafficking and neurotrophic signaling Conclusion: Collectively, and together with other recent observations, these findings suggest that SORL1 is a key and broad regulator of retromer-dependent endosomal recycling in neurons, a conclusion that has both pathogenic and therapeutic implications for Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document