Optimizing membrane thickness for vanadium redox flow batteries

2013 ◽  
Vol 437 ◽  
pp. 108-113 ◽  
Author(s):  
Dongyang Chen ◽  
Michael A. Hickner ◽  
Ertan Agar ◽  
E. Caglan Kumbur
2016 ◽  
Vol 46 (2) ◽  
pp. 166-174
Author(s):  
BaoWen ZHANG ◽  
Yuan LEI ◽  
BoFeng BAI

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 214
Author(s):  
Dennis Düerkop ◽  
Hartmut Widdecke ◽  
Carsten Schilde ◽  
Ulrich Kunz ◽  
Achim Schmiemann

Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995–2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.


Carbon ◽  
2013 ◽  
Vol 60 ◽  
pp. 280-288 ◽  
Author(s):  
Cristina Flox ◽  
Javier Rubio-García ◽  
Marcel Skoumal ◽  
Teresa Andreu ◽  
Juan Ramón Morante

Author(s):  
Han-Wen Chou ◽  
Feng-Zhi Chang ◽  
Hwa-Jou Wei ◽  
Bhupendra Singh ◽  
Amornchai Arpornwichanop ◽  
...  

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2021 ◽  
Vol 289 ◽  
pp. 116690
Author(s):  
Z.H. Zhang ◽  
L. Wei ◽  
M.C. Wu ◽  
B.F. Bai ◽  
T.S. Zhao

2021 ◽  
Vol 39 ◽  
pp. 166-175
Author(s):  
Zeyu Xu ◽  
Mingdong Zhu ◽  
Kaiyue Zhang ◽  
Xihao Zhang ◽  
Lixin Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document